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Introduction.

Our research efforts are concerned with undetermined coefficient problems in partial differen-
tial equations, in particular those problems where the unknown coefficients depend only on the
dependent variables. The problems modeled by these equations are related to the determination of
unknown physical laws or relationships. The nonlinear terms which we seek to recover in our model
problems correspond to material properties that have physical significance; temperature dependent
specific heats, conductivities, reaction terms, to name a few. Examples of such problems are -
the determination of an unknown reaction term f(.) in ut - u,- = f(u), or the conductivity k(.)
in the equation V. k(u)Vu = 0. We seek to determine these functions by giving only overposed
boundary data.

This type of problem is distinct from those that involve media with unknown inhomogeneities;
that is, the differential equations contain an unknown coefficient that depends on the independent
spatial variable. In a given physical problem both situations may occur, that is, the unknowns have
both spatial as well temperature dependence. This is a considerably more difficult problem and
has received little attention in its full generality; instead both the limiting cases of dependence on a
single one of these variables have received the vast majority of the research efforts. For those cases
where the media is isotropic, the assumption that the unknowns depend only on the independent
variable may be a very reasonable one. From a mathematical standpoint the two types of problem
pose different mathematical difficulties. Both types of inverse problem leads to nonlinear equations,
but in the case when the unknown coefficient depends on the spatial variables the direct problem
is frequently linear. In contrast, when the coefficient is a function of the dependent variable, the
direct problem is nonlinear.

Examples:
(I) The recovery of the one (or more than one) of the functions c, k, f or h from the parabolic equation

c(u)ut - V .k(u)Vu = f(u) + y(z,t) in Q x [O,T] (1)

with initial data u(z, 0) = uo, and boundary data

Ou-=h(u) + a(z, t) x E oL (2)

We prescribe as overposed data the value of u at a specified point zo on 8f0. Of course, if more then
one function is unknown additional overposed data must be prescribed. This can be either the value
of u at other boundary points, or the value of u at the same point for different experiments, that is,
for values of the known functions -, a or u0. The functions c, k, f and h represent the specific
heat, conductivity, reaction term, and radiation boundary condition respectively. An alternative type
of overposed condition would be to prescribe the total energy of the system as a function of time. This
leads to recovery problems with non-local boundary conditions.

(II) The recovery of one of the functions k or f in

-V. k(u)Vu = f(u) + -y(z, y) in Q (3)

given Neumann data on 00(, plus the value of u(z) = O(z) on some subset of the boundary as overposed
data. Once again, if both k and f are unknown then we should prescribe additional overposed data.



(III) The recovery of the functions f, (0) and f2(4,) in the parabolic system

ut - DIAu =au + fl(,)
vt - D2AV 13u + f2 (0)

where 0 is a known function of u and v and represents the interaction between these functions. A
typical example might be 4, = uv.

(IV) If it is known that the coefficient may depend on the gradient of u as well u itself,

U, - u.IN = f(u, u.) in 9 x [0, T] (4)

then we might try to use a finite expansion of the function in the variable Vu, and look for an
approximation to f in one of the forms f(u, u.) = f1(u)+f2(u)u, or f(u, u,) = {fl(u)+f 2 (u)u 3 }/{1+
fa(u)u.}. The first is a linear approximation in the variable u., the second a rational function
approximation. In either case we must recover a vector of unknowns (f, (u), f 2(u),...)

Our interest in these problems is broad. We seek to identify the correct types of data under
which the problem has a solution. A uniqueness result indicates sufficiency of data, an existence
result indicates that the problem is not overdetermined. The extent to which the solution depends
continuously on the data is clearly important information for the implementation of any practical
scheme. In addition to these questions we are interested in constructibility of the solution and in
the development of algorithms that lead to efficient numerical recovery.

Unknown coefficient problems are notorious for several reasons; they tend to be difficult math-
ematical questions, they are often severely ill-posed, and when a solution is found it tends to be
ad hoc. While not much can be done about the first two of these, numerous attempts have been
made to resolve the third. The lack of success in this endeavor, even for seemingly restricted
cases (parabolic equations with a single unknown, u -dependent coefficient) is well known. A
major theme at the recent Arcata conference* was the discussion of various attempts at providing
"general" solution techniques for such problems.

Another feature of these inverse problems, due in part to their intrinsic nonlinearity, is that
existence of a solution does not imply uniqueness or vice-versa. Indeed there are many problems
for which uniqueness has been shown but existence questions remain completely open. Even in
those cases where there has been successes, methods yielding existence are often entirely different
form those that gave uniqueness, and the time span between the proofs of uniqueness and that
of existence can be considerable. It was 20 years in the case of the recovery of a potential in an
ordinary differential equation from spectral data.

The research proposed and our current endeavors, focus around the examining of several ap- 0
proaches that have been used with success in other areas and attempt to apply them to the types
of problem mentioned in the examples above. Each method suggests a possible algorithm for the
inverse problem, our main interset is to determine those that are feasible, attempt to prove conver-
gence of the method, and if possible compare competing methods for computational efficiency.

* Inverse problems in Partial Differential Equations AMS/SIAM/IMS Summer Conference Series, Ar- eLS

cata California, July 26-August 4, 1989
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Work by the investigators prior to the grant period.

In a series of papers the investigators have developed computational algorithms based on iteration
techniques which are applicable to a wide variety of problems of both elliptic and parabolic type.
The main strategy of this procedure can be outlined as follows. Using an initial approximation
to the unknown function, one solves the direct problem to obtain the solution of the differential
equation, u(x, t). Evaluating the differential operator on the overposed boundary, then using the
solution of the direct problem and the overposed data, one obtains a nonlinear equation for the
unknown coefficient or term that is to be reconstructed. Solving this nonlinear equation, a new
approximation to the unknown term is obtained. This procedure is repeated until convergence
results. Since this method involves projecting the differential operator onto that subset of the
domain where the overposed data is given, it has been referred to as the Fixed Point Projection or
FPP method. The terminology "fixed point" refers to the reformulation of the inverse problem as
an equivalent fixed point problem.

As an illustration of the technique, consider the recovery of the solution pair (u, f) in ut- u, -

f(u) with u.(O,t) = go(t), u_(l,t) = g1(t) and u(x,O) = uo. We denote the solution of this direct
problem by u(x, t; f) in order to show the dependence of u on the function f. Let the overposed
data be u(O, t) = 6(t). If the differential equation is evaluated on the section of boundary where
the overposed data is prescribed (x = 0), then we obtain f(O(t)) = 0'(t) - u,,(O, t; f) - T[f]. We
can show that the inverse problem is equivalent to proving the existence of a unique fixed point for
T, and give conditions on the data for which such a fixed point exists. The solution can then be
obtained by the iteration scheme fn+l = T[f,].

With this method the investigators have been able to prove uniqueness and convergence results
for the following inverse problems.
(a) The recovery of the solution pair (u, f) in ut - Au f f(u) + - given the initial value u(z, 0) and

Neumann data on 80, plus the value of u(Zo, t) = 9(t), for some point Zo E Of0, as overposed data,
[4].

(b) The recovery of the solution pair (u, f) in Au = f(u) given Neumann data on 00, plus the value of
u(z) = O(z) on some subset of the boundary, [3].

(c) The recovery of the solution pair (u, k) in u, - V. k(u)Vu = 0 given the initial value u(z, 0) and the
flux, k(u)Ou/va on 00, plus the value of u(zo, t) = 0(t), zo E Of as overposed data, [7].

(d) The recovery of the solution pair (u,c) in c(u)ut - Au = -f given the initial value u(x, 0), Neumann
data on Ofl, with u(zo, t) = 0(t), zo E L0 forming the overposed data, [7].

(e) The recovery of the solution pair (u, h) in the one dimensional heat equation subject to the nonlinear
boundary conditions u. = h(u) on 01. The value of u(0, t) = 0(t), is given as the overposed data,
[5].

Results of some of the numerical computations can be found

In addition to this work we have used the method to obtain :erical algorithms for the
solution of the multiple unknown coefficient problems in items (III) and (IV) above as well as the
recovery of both c(u) and f(u) in c(u)ut - u,, = f(u), [8]. These problems are considerably more
complex, and to date we have not been able to answer uniqueness or convergence questions. Some of
the complications include the differing spaces in which the various coefficients lie, and in obtaining
physically meaningful conditions on the data that allow one to solve the update equations. We
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have been able to provide necessary conditions on the data, and to demonstrate the feasibility of
the approach for these problems. The last part of this work was completed under the present ONR
grant period.

For certain problems, the recovery of k(u) in V. k(u)Vu = -f and the recovery of the function
h(u) in the nonlinear boundary condition d = h(u) for the heat equation in n spatial dimensions,
we have been able to use direct approaches and obtain uniqueness results under quite general
assumptions on the data, [6, 13]. Neither of these problems appear to be suitable for application
of the FPP method. The second of these problems was done during the ONR grant period.

The FPP method used in the above problems has the advantage that it is applicable to a wide
class of undetermined coefficient problems of parabolic and elliptic type, and is easy to implement
provided that the boundary conditions are in a particular form (specifically, the overposed data
should consist of Dirichlet data on some subset of the boundary). In addition, as long as the data
is sufficiently "noise-free," the method is quite robust. Convergence is rapid, and takes place in the
optimal space for the problem, that is the space with the maximum regularity permitted by the
data.

On the other hand, the approach has its drawbacks: It is only applicable when the differential
equation (or that part of the differential operator containing the unknown coefficient) is evaluated on
the overposed boundary, one must be able to solve the resulting equation for the unknown coefficient
on that section of the boundary where the overposed data is specified. The overposed data has to
be monotone on that section of the boundary where it is specified, and since implementation of
the algorithm always requires the differentiation of the overposed data, any "noisy" data should be
smoothed before use in the numerical inverse solver. The algorithm is sensitive to the amount and
type of smoothing employed. Finally, it is often difficult to prove the convergence of the algorithm.

Overcoming some (or all) of these restrictions is the primary motivation for our further research
on these problems. There are alternative methods, some of which have been used to solve other
types of inverse problems, but to our knowledge none of these have been applied to the recovery of
terms containing the dependent variable in quasilinear equations.

Research under the grant period.

Our current research program consists of a continuation of our previous work in parabolic and
elliptic equations, and also an extension of these ideas and techniques to undetermined coefficient
problems for first order hyperbolic equations.

For the elliptic/parabolic problems we are currently investigating several appr aches - Least
Squares, Conjugate Gradient, Newton and Quasi-Newton, Homotopy, and Collocation methods.
These methods can be broadly classified as either residual or non-residual based recovery schemes.

We will once again use our one spatial dimension reaction-diffusion example to illustrate the
main ideas. The inverse problem for the recovery of f is equivalent to solving the equation
u(O, t; f) = 0(t). More generally we can write the overposed data as B[u] = 0(t) where B is
some functional of u. The case B[u] = u(O, t) corresponds to the Dirichet condition above, and
B[u] = fo u(x, t)dx would correspond to a specification of energy. Note that B need not be a local
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operator.

The residual methods are iterative schemes that have the general form:

f(n+l) = (n) - [D] (B[u(x, t; f(n)) - 9(t)]) (5)

where D, is linear operator. The FPP method is a special case of the above, [4], as are the Newton,
Quasi-Newton and Homotopy methods.

If one knows a priori information about f (for example it is positive or monotone or very
smooth), then one may be able to incorporate this information into the choice of Dn and regularize
an otherwise poorly behaved method. Smoothing splines, moving averages, spline interpolation,
non-uniform weight methods are some operations which are typically incorporated into the operator
D,. Slight changes in the form of Dn can result in substantial changes in the performance of the
algorithm.

We have looked at general residual schemes and have shown that one of them is equivalent to
the FPP method for the recovery of f in in the reaction-diffusion case when the overspecified data
is of Dirichlet type. It is interesting to note that although the FPP method is not applicable to
other boundary conditions such as the prescription of total energy E(t) = fo u(x, t)dx, the residual
update scheme can in fact be used in this case. We have obtained some numerical results for this
modified scheme that are extremely encouraging.

An example of a non-residual update scheme are collocation methods. In one particular imple-

mentation, we use the evolutionary nature of the equations to sequentially determine the coefficients
ai in the basis expansion f = E'- ai4i by solving the single nonlinear equation

ifj+l

0(tj+l) = B[u(z, tj; COO]
i=O

for a monotone sequence of points {tj}. We assume that the coefficients {ai}, 1 < i < j, have
been determined for {t,}, 1 < i < j. This leaves a single unknown j+1 to be determined by the
remaining equation.

Another example of a non-residual update scheme is the least squares method. This is a
popular approach especially for recovering a discrete set of parameters. Output least squares has
been used extensively in control theory.

A survey of all of these methods as they apply to the above type of undetermined coefficient
problem was presented by the investigators in the proceedings of the Arcata conference.

In this last half year we have concentrated on the collocation method, and applied it to two
particular problems: one for the recovery of an unknown boundary condition in the heat equation,
and the other for an interior coefficient, (forcing term).

For the first problem considerable insight has been obtained. We have been able to show that
there is a unique piecewise linear approximant IN to the function f such that the solution of the
direct problem u(O, t; IN) agrees with the overposed data at each of the N collocation points. In
addition, we have given conditions under which the function fN will converge to the function f in
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the supremum norm, and proved that an effective rate of convergence of N- 1 12 results. This work
has been recently submitted [9], and details on the numerical implementation of the algorithm
as well as its application to boundary control will appear in the 1989 Tampa CDC conference
proceedings.

For the recovery of the forcing term f(u) in ut - Au = f(u) we have been able to show
uniqueness of the approximating piecewise linear function IN. We can show that fN cannot
be expected to converge to f in the supremum norm, requiring that u(O, t; IN) agrees with the
overposed data at the N collocation points. We believe that one can obtain convergence, if instead
of collocating u(O, t; fN) - 0(t), one collocates the derivatives of these quantities, u(0, t; IV) - 0'(t) .
This situation would be entirely in keeping with the requirements of our previous results using the
FPP method, but we have not as yet been able to prove a positive convergence result for this case.
Numerical experiments bear out the conjecture.

In light of the success of the collocation method, we intend to investigate the interior problem
further, and also to use the method for resolving other inverse problems. Incremental collocation
schemes have several attractions; in theory they are widely applicable and offer a way to gain
insight into problems with multiple unknowns. The method is fairly straightforward to implement,
and when applicable, is extremely computationally efficient. Indeed, in some cases the cost of the
inverse recovery is roughly the same order as that for a single direct solve of the nonlinear problem,
[9]. This is quite rare in undetermined coefficient problems.

Our intention is to continue on with this program, looking for various ways to formulate these
inverse coefficient problems. We have begun to look at several methods that offer promise, these
include the Newton, Quasi-Newton and homotopy methods. We will continue our work on the FPP
and collocation schemes.

We have been looking at undetermined coefficient problems for first order hyperbolic equations

ut + Au. + Bu = C (6)

subject to initial and boundary conditions. These equations are ubiquitous in applied mathemat-
ics and occur in such diverse areas as hydrodynamics, traffic flow, neutron transport theory and
population dynamics. While the direct problem corresponding to these models are reasonably well
understood, the same cannot be said for inverse problems. The coefficients A, B, and C as well
as terms that occur from the boundary may very well be unknown, and additional data must be
made available for their recovery.

In order to get a better feel for the more complex problems, we have looked at several special
cases, in particular when A is a constant. In this case the characteristics are known and the
differential equation is simpler to analyze. We are unwilling to look at problems that are generated
entirely by mathematical considerations, and thus have worked on specific questions that arise
in a particular area, in this case, population dynamics. The main reason for this is that the
mathematical models almost always lead to equations with linear characteristics and thus avoid
some obvious technical difficulties that would be associated with the direct problem. Although the
equations we consider model the growth of an age-structured population, where the birth and death
rates depend on age (as well as other -variables), they are certainly not limited to this application.
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If p(a, t) denotes the number of individuals of age a alive at a particular time t, and Ada is
the probability of a death occurring to a given individual in the period a to a + da. Since this
quantity should depend on the age of the individual A depends on a, and in the case of competition,
should also depend on p(a, t). This dependence may be in fact be on the total population at time
t, P(t) = f p(a, t)da, and there certainly are circumstances where A = A(a, P) is the appropriate
model. This leads to the following equation,

pt(a, t) + p.(a, t) + Ap(a, t) = 0 (7)

In addition to this we may prescribe the initial condition

p(a,O) = O(a) (8)

and a boundary condition at a = 0 which corresponds to the renewal process. This may take either
of the forms

p(0, t) = B(t) (9)

or
p(O,t) = JO3p(a, t) da (10)

where Oda is the probability of a individual of age a giving birth (per unit time) in the interval a
to a + da. # will depend on a and probably also on p(a, t). Equations (7), (8) and (10) constitute
the standard model for age-structured population dynamics. See the paper [10] and its references
within for more details. We will refer to this as the direct problem. It corresponds to solving a
(possibly nonlinear) first order hyperbolic equation with non-local boundary conditions. However,
our " species" could be also be mechanical parts; p(a, t) would denote the number of parts of age
a still in service at time t, and A would be an age dependent rate of failures.

In order to solve this direct problem we have to know the values of A, 0 and either B or
f, and this is certainly not reasonable in many cases. If this is so, how can these quantities be
determined? What constitutes reasonable data that might be measured in order to identify one or
more of these quantities? As expected, the answer to this question depends on which quantity is
considered to be unknown, and on what variables it depends. There are certainly situations where
one could evaluate p(a, T) at some fixed time T, this corresponds to the taking of a census or of
an inventory that accounts for the age of each object. In other situations this may not be possible,
but one is able to measure the value of P(t), the total poptdation or number of parts in service.

There is now a considerable number of physically reasonable inverse problems that might be
posed. Some of these include:

(1) Given the function A = A(a, P) the initial data p(a, 0) = 4i(a), and the values of P(t) for some range
0 < t < L where L is the maximum lifespan, determine the function 3(a). This corresponds to the
determination of a nonlocal boundary coefficient in a quasilinear hyperbolic equation.

(2) Given the functions A, and 0 determine the the initial data p(a, 0) = O(a). The overposed data could
be either the total population over some time interval [0, T] or the values of the age-structure at a
later time T, p(a, T).

(3) Given the functions 0, and /3 determine the the death function A. There are several cases. The first
is when A is a function of a only and the overposed data consists of the values of the age-structure at
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a later time T. A second is when A depends on both a and P but is a simple sum of the natural and
environmental death rates, that is, A has the form AN(a) + AE(P), where AN is the death rate due
to natural causes and AE is the death rate due to the environment. We assume that AN(a) is known,
and the overposed data consists of the total population over some time interval [0, T] Another possible
form for A might be A(a, P) = AN(a)[1 + AE(P)]. The first form assumes that the environmental
pressure is the same for all ages, the second assumes that it is coupled to age so that environmental
pressure is greater on the age group with a high natural death rate.

Problem one was solved in [101, where conditions were imposed for unique recovery. These re-
quired a certain incompatibility between the initial population and the initial birth rate. Without
this condition, both non-uniqueness and non-existence is possible, and this was shown by coun-
terexamples. In addition it was proved that when a solution exists it is unique and continuous
dependence result could be obtained. These stated that the function 3 can be controlled in the
supremum norm provided the overposed data is controlled in the C2 norm, proving that the inverse
problem is ill-conditioned. A counterexample showed this result to be essentially the best possible.
Some numerical examples were presented.

Problem two was considered in [11]. It was shown that uniqueness of the problem followed
under certain conditions. The degree of ill-conditioning of the inverse problem depended critically
on the behavior of the function A in a neighborhood of the maximum life span, L for the case of
overposed data P(t), and on the support of the birth function /3 for the case of overposed final
data. Numerical reconstructions were presented.

Problem three is discused in [121. Uniqueness, existence and continuous dependence results
are obtained and the recovery of AEr is obtained by an iteration procedure. Under certain cases
this scheme may converge monotonically.

These last two papers was work performed under the ONR contract.

Clearly, the above represent only a fraction of the reasonable questions. The recovery of both
the birth and death functions would be desirable, as would the recovery of one of these coefficients
as a function of two variables, a and P (or possibly a and p). The case when the coefficient A in
(6) is non-constant but depends on x, t or u is the important one for many applications. Much
work remains to be done, actually we have only scratched the surface. We propose to continue this
research into first order hyperbolic equations, and we have two graduate students who are starting
to work on these problems.

Papers published

During the past year we have submitted five papers for publication, [7, 9, 11, 12, 13]. One of
these, [13] has been accepted by the Journal of Differential Equations, and a second, [7] by Nu-
merical Methods in P.D.E. Another paper, [8], was revised during the grant period. Several papers
incorporating our most recent results are in preparation. In addition, there are two conference
proceedings resulting from this work. One of these is to the I.E.E.E conference in Control I, and
we have provided a copy of the paper that will be published in the proceedings. The other was

1 December 13-15, Tampa Florida.
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presented at the cata conference mentioned earlier.

Invited Talks

1. Inverse problems in Partial Differential Equations, AMS/SIAM/IMS Summer Conference Series,
Arcata California, July 26, August 4 1989. Invited hour talk, presented by Michael Pilant.
The talk will appear in the conference proceedings to be published by SIAM.

2. "A collocation scheme for the identification of coefficients in nonlinear parabolic equations"
I.E.E.E conference in Control, Tampa, Florida December 13-15, 1989. Invited talk, to be given
by Michael Pilant. A conference proceedings will result.

3. "Using Domain Decomposition Methods for Computing Singularities of Equations of Mixed
Type," SIAM Conference on Domain Decomposition Methods, Houston, March 20-22, 1989.
Presented by Michael Pilant, also chaired session.

4. "Undetermined Coefficient Problems for First Order Hyperbolic Equations," European Con-
ference on Inverse Problems, Montpelier, France, November 26-December 2, 1989. Presented
by William Rundell.

5. AMS Regional Meeting "Special Session on Inverse problems," Manhattan, Kansas March
16-17, 1990. Invited talk (William Rundell).

6. SIAM Symposium on "Invariant Imbedding and Inverse problems," Albuquerque, New Mexico
April 19-22, 1990. Invited talk (William Rundell).

Other activities during the contract period

William Rundell was the Chairman for the AMS/SIAM/IMS Summer Conference on "Inverse prob-
lems in Partial Differential Equations" held at Arcata California, July 26, August 4 1989. Approx-
imately 70 people attended the workshop style conference, there were 15 main speakers covering
as wide a range of topics as possible within the framework of the title. Funding for the conference
was by NSF and ARO.

Equipment and personnel available for continued research.

This fall we were fortunate in being able to hire two new assistant professors who will actively
participate in the general area of inverse problems, and will add considerable expertise to our
efforts.

Richard Fabiano, a student of John Burns, spent 3 years at Brown working with Tom Banks.
His speciality is in control theory, in particular for viscoelastic equations, but he is interested in
pursuing the not unrelated area of undetermined coefficient problems. His knowledge of the output
least squares methods for distributed parameter systems will be very useful in this regard.

Bruce Lowe was a student of Robert Kohn and graduated from Courant. He works in numerical
schemes for undetermined coefficient problems using variational methods.

There are three Ph.D. students beginning work in this area under our direction.
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We have excellent computational resources at our disposal. These include an IRIS 3130, MIPS
120, MIPS M2000, two SUN and two VAX workstations. The IRIS graphics workstation and the
M2000 were obtained through NSF equipment grants.

The current ONR grant is the primary means of funding for this research effort. We believe
substantial progress has been, and will continue to be achieved in the area of inverse coefficient
recovery problems for partial differential equations.

Referenced publications by the investigators.

[11 Pilant, M. and Rundell, W. Undetermined coefficient problems for nonlinear elliptic and
parabolic equations, in Inverse Problems, Birkh~user, Inter. Ser. Numer. Math., 77, 139-154,
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Abstract:

In this paper we consider a class of inverse problems in which an unknown function, c(.), is to be determined

from a parabolic initial-value problem, with overposed Dirichlet data along a portion of the boundary. A

mapping between the overposed data and the unknown coefficient is obtained in the form of a singular integral

equation. This is solved by iteration, and the resulting fixed point is shown to be the solution of the inverse

problem. Sufficient conditions for convergence of this method, as well as an extension to the case of an

unknown thermal conductivity, are given.

I. Introduction

In this paper we consider a class of inverse problems in which an unknown function, c(.), is to be determined

from

c(u)ut - u,. = -(x,t) in [0, 1] x [0, T] (1.1)

with initial data given by

u(x,O) = uo(z) in [0, 1] (1.2)

and boundary data given by

u,(0,t) = go(t) u.(1,t) = g(t) (1.3)

The functions y, uO, and gi are given data.

If c were known (and sufficiently regular), then (1.1) - (1.3) would be a well posed initial boundary-value

problem for the determination of u(x, t). In order to recover the pair (u, c) we need to give additional

information and we do this in the form of Dirichlet data along part of the boundary; specifically, one is given

the values of u(0, t) for 0 < t < T.

The recovery of unknown coefficients whose argument is the dependent variable of the equation has many

important applications and considerable recent effort has been invested in these problems. In particular,

the question of when a given amount of overposed data is sufficient to uniquely determine the coefficient

has received a fair amount of recent attention, [2,3,4,6-12]. There are fewer constructive existence results,

not because of their lack of importance, but rather because of their inherant difficulty. In previous work [8],

the authors have shown how to recover the function f in ut - u,, = f(u) by giving overposed Dirichlet

data in the same fashion, and have shown how to recover h in a nonlinear radiation boundary condition

au/Ov = h(u) for the heat equation by prescribing the value of u at a point on the boundary [9]. Numerical

implementations of these algorithms appear in [10].

In this paper the method of attack on the problem will be similar to that used in [8]. The main complication

is the fact that the unknown coefficient multiplies one of the principal terms in the operator. We must ensure,

for example, that c > 0 at all times. We shall prove that this is indeed the case, under suitable conditions

on the data. Furthermore, we shall demonstrate that c(u) can be recovered by an iteration scheme, and give

sufficient conditions for the unique solution of the inverse problem.

Equation (1.1) describes the evolution of the temperature in a homogeneous rod of constant thermal con-

ductivity, but in which the specific heat depends on the temperature. The forcing term, -y, corresponds to

known temperature sources (or sinks). Thus the direct problem, namely (1.1) - (1.3) for a given coefficient c

is inherently a quasilinear evolution equationfor u(x, t). For the one-dimensional case discussed above, the

temperature flux au/lx is known at both ends of the rod. The temperature at one end is measured and

provides the additional (overposed) data for the problem. This type of problem is typical of problems where

the dependence of material properties is not known in advance, and must be deduced by experiment. We
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set up a experiment in which the thermal flux is controlled at the boundaries and then watch the resulting
temperature behavior. Recovering the material property is equivalent to showing that there is at most one
specific heat which can give rise to the overposed data, and that one can in fact construct the unknown
function from knowledge of the overposed data.

In fact the methods of this paper go through formally for the case of n space variables since the resulting
estimates have multidimensional parallels, but the analysis is more cumbersome. If fl is a fixed bounded
domain in R" with smooth boundary 00 and z 0 is some fixed point in 0f/ then the corresponding problem
is to recover the pair c and u from

c(u)ut - Au = -(z, t) in fQ x (0, 7]

u(z,O) =uo(z) in fl
Ou-= on fl.

with a measurement of overposed data consisting of the temperature at the point zo

u(zO, t) = 9(t).

In section 5. we consider a similar problem to the above, namely the recovery of the thermal conductivity
k(u) in

U, - V (k(u)VU) = y(z, t).

H. Mathematical Preliminaries

We shall consider the problem

(u)ut - u" ==(z,t) 0<z< 1, t>0 (2.1)

u,(0,t) = 0, u'(1,t)=gj(t) (2.2)

u(X, 0) = uo(z) (2.3)

with overposed Dirichlet data

u(O, t) = 0(t). (2.4)

We define the direct problem to be (2.1)-(2.3) for a known c, and denote by u(z,t;c) the solution of this
initial-value problem.

We will make the assumption that the overposed data O(t) is a strictly montone function of t for all t > 0.
In addition we have the following constraint, arising from the consistency of the data

C(0(0))O'(0) - U%(0) = y(0, 0) (2.5)

which determines the value of c(0(0)) uniquely. By rescaling the time variable, we may assume that c(0(0)) =

1. Denote by tk(z, t) the function u(z, t; 1), so that tk is the solution of

O, - 0, = 0(z,t) (2.6)

0,(0,t)=0, k(1,t) = gj(t) (2.7)

O(z, 0) = UO(z). (2.8)
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If c(u) -- 1, then O(t) i 0(0, t). The deviation of u(z, t; c) from 0 measures, in some sense, the size of the
nonlinear term c(u).

Some comments might be made at this point. If u,, is negligible, then we have from (2.1) c ; y/ut which
implies that as c increases then ut decreases. We can recover, to leading order, the behavior of c by
computing 7(0, t)/G'(t). In fact if the boundary data is such that uz,(0, t) = 0 then the function c can
be recovered directly from c(O(t)) = y(0, t)/e'(t). Although the idea of a perturbation approach about the
"flat data" case is appealing, numerical results indicate that unknown coefficients with large variations (even
discontinuities) can be recovered efficiently.

We will need some notation. With

DT:-{( ,t) I 0<z<1, 0<t<T} (2.9)

we define several norms and seminorms

II u I1 = sup lu(z, l (2.10)
DT

lu(.,t011 = sup Iu(t,t0 - u(,7, 01 (2.11)

II f 1100= sup If( )I, t E dom(f) (2.12)

IfI1 = sup I At) - f()I t,q E dom(f) (2.13)

II f 11=11 f 11. +111 (2.14)

The set of all functions f defined on the set X with II/11 < o0 we denote by Lip,(X). We will also use the
notation f E Lip, if the set X is understood.

The role of the time variable is one of the complicating factors. We in fact avoid the usual semi-norm for
solutions of parabolic equations

lula = sup lu( , 1)- 1( , r/l
to? (If - 772 + Ij - l]*/2,
tor

since the appearance of t in such an asymmetric way is one of the major obstacles faced in formulating the
mapping between 0 and f.

We will also have occasion to use the notation

u(., t) = u(y, t) - u(o, t).

For a fixed E < 1, define the subset BE to be the ball of radius E, in Lipi, centered on the function
identically 1. That is,

BE = {1 c E Lip[O,oo), II1 - cIl < E}. (2.15)

We remark that any function, c, defined on Lip[0,T] can be extended to a function on Lip[O,oo) by
continuation as a constant, without increase in norm. This continuation will be used later.

If cE B6 for some 6< 1, we have Il-cl<6 and hence 0< 1-6 < Ici< 1+6<2 and c is uniformly
bounded away from c = 0, which is necessary for the iteration scheme to remain well defined.

We shall denote by C a generic constant which depends on the domain, but is independent of the solution
u(z, t; c), and we denote by C(E) a generic constant which depends on u only through E.
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Finally, we say the c E BE has property S if

ieC(u) - c(V)I < CE Iu - vii

for some constant CE < oo. This property holds, for example, if c E C2 .

We will also require the following assumptions on the data and on c

Al. (i) uo E C3 [0, 1], (ii) gi(t) E C2[0,oo), (iii) /(Z,t) E C'[0, 11 x C'[0,oo).

A2. O(t) is a monotone function, whose derivative lies in C1 [O, co) and
inf 10'(t)( > 5 > 0.
t>o

A3. c E BE for some E < 1.

A4. The function 0 is such that there exists a c E BE with u(O, t; c) = 0(t).

Some remarks on these assumptions are in order.

Remark 1: Assumption Al is sufficient to ensure that u is sufficiently regular and generates smooth
boundary data. A2 is necessary to recover c from knowledge of c(0(t)), and to ensure compatibility with
some c E Lip1 function generating the data. A3 is sufficient to ensure that the problem remains strictly
parabolic. Finally, A4 is necessary in order to ensure that a solution to the problem exists.

Remark 2: In the case where u is spatially independent, the direct problem becomes

Ut = [c(u)]-l (t)

and this would not necessarily possess a unique solution unless c(-) were, for example, Lipschitz. Uniquess of
the direct problem is necessary in order that our algorithm be well defined. To show uniqueness of the inverse
problem we actually need to impose further constraints on the solution c, namely that it have property S.

I. The Boundary Coefficient Mapping

Evaluating (2.1) on the overposed boundary, and using the overposed data (2.4), we observe that any strong
solution of (2.1)-(2.3) and (2.4) must satisfy

c(O(t))9(t) - U.-(0, t; c) = (0, t). (3.1)

Define the mapping Tic] by
T[c] = u::(O,t; c) + (0,t) (3.2)

0'(t)

where u(z,t;c) is the solution of (2.1)-(2.3) for a prescribed c(.). Any solution of the inverse problem

therefore satisfies

T[c](t) = c(O(t)). (3.3)

We call such a function a 0-fixed point of T. The natural iteration scheme introduced is clearly

c(n+,(O(t)) = T(c(n)](t). (3.4)

If u(") =- u(z, t; c(")) > O(T) then we define c(n)(u(n )) = c(')(O(T)) and similarily if the argument is less
than 0(0). This extends c(") in a Lipschitz continuous manner without increasing its norm. This guarantees
that the scheme is well defined even if it should happen that one of the iterates u(') should lie outside of

the range of values of the overposed data.
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Note that 0(t) must be monotone for one to recover c('+l) from (3.4). As we remarked previously, in order
for this scheme to be well defined, we must have uniqueness for the forwards or direct problem. We will show
that Tic] maps a certain ball in BE into itself. If the data is sufficiently smooth (satisfying Assumptions
Al, A2, A3), and the initial starting value c(') lies in BE, then it is guaranteed that each iterate c(") will
yield a unique u(z, t; c(")) to the direct problem.

The outline of the rest of the paper is as follows. Lemma 1 shows that the inverse problem can be reduced
to finding a fixed point of the mapping T[ ]. Theorem 1 shows that T[ ] maps BE to itself which implies
that the iteration scheme is well defined. In Theorem 2, using an additional regularity assumption, we show
that there is a unique fixed point.

The iteration scheme (3.4) can be recast in the form

c(,+1o -u?(0, t; c()) + 7(o, t)
0'(t)

[ ,; c ) ,( u, (o, t))

",.(n)( t, c) (3 5 )=c(")(O(t)) + I o,01(t) -1Cn(n)

+ [C(")(U(n)(O',t)) - c(n)(O(t))]

= c(")((t)) + Y (u(")(o, t) - 9(t); c("))

where it is seen to be equivalent to a nonlinear, nonstationary residual update scheme. In order to show the
equivalence of 9-fixed points and solutions to the inverse pr(blem we prove the following Lemma.

Lemma 1. If (u, c) is a solution of (2.1)-(2.3), then u satisfies the overposed boundary conditions (2.4) if
and only if c is a 0-fixed point of T[ ], defined in (3.2).

Proof: If (u, c) is a solution of the equations (2.1)-(2.4) c is a 0-fixed point. This is clear, since the
identity c(9(t))6'(t) - u,,,. (0, t) = 7(0, t), which follows from (3.1), implies that

u..(0, t) + -f(o, t)
C)= '( T[c](t).

On the other hand, suppose c is a 0-fixed point, then

c(0(t))0'(t) - U.(0, t) = 7(0, t)

but from (2.1) the solution u satisfies

c(u(X, t))u,(z, t) - u..(Z, t) = "Y(z, t).

Evaluting this last expression at z = 0, and subtracting from the previous expression, we obtain

c(e(t))'(t) - c(u(O, t))u,(O, t) = 0.

Therefore,

[c(0) - c(u(0, ))] 0'(t) + c(u(O, )) ['() - u,(0, t)] = 0.
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Solving for 9V(t) - us(O,t) we have
6'(t)

#'(t) - u(O, t) = [c(u(0, t)) - c(0(t))] c(,(0 t))"

By Assumption A3, lc(u(O, t))[ > 0 and by A2 10'(t)l < oo. Consequently, if c is uniformly Lipschitz;

le1(t) - ut(0, 01 <5 PH , 1u0, ))10(t) - u(0, 0 1.

Setting ar(t) = 0(t) - u(0, t)
la'(tI < Mla(t0l. (3.6)

Since a(0) = 0 (the initial boundary data and overposed data are consistent), Gronwall's inequality yields

ja(t)l = 0, and the Lemma is proved.

The equivalence of O-fixed points and solutions of the inverse problem appears to be a general result for this
method of solving single inverse coefficient problems.

IV. Iteration Procedure

The Green's function for the heat equation on the unit interval, with homogeneous Neumann boundary
conditions, has the form

K(z, y, t) = G(z, y, t) + H(z, y, t)

where 1 r

G(z, y, t) e= 1 e-(- 1 /' + (4.1)

and H is bounded, C1 -smooth kernel for t > 0, [1.
Rewriting (1.2) in the form

us - urs = 7(z,t) + (1 - c(u))u, (4.2)

and subtraction from (2.6)-(2.8) implies that the function v - u - 0 must satisfy

Vt - VX "= [1 - c(u)] u,

vC(O,t)= 0, v4(1,t) = 0

v(Z, 0) = 0

Consequently,

u - = v " K(z, y, t - r)[1 - c(u(y, r))]ut(y, r)dydr (4.3)

Differentiating, with respect to z twice, and setting z = 0, we obtain

u..(0, t; c) = 0..(0, t) + 1j K..(0, y, t - r) [1 - c(u)] u, dydr (4.4)

and consequently

T[c](t) = 0-1(t) [7(0, t) + u..(0, t)]

= 0-1(t) 7(0, t) + b.(0, t) + jj K..(0, y, i - r)[1 - c(u)]udydr] (45)

= 6-(1) [t,(ot) +11 K..(O,y,t - r)[1 - c(u)]u, dydr]

The next Lemma is crucial to the estimates that will follow.
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Lemma 2. The kernels K. and K.. have the property that for any fixed zo,

j [f K.(z, y,t - 1r)dy h(zo, r)dr = 0 t > 0 (4.6)

jt[/1 K..(z,y,t- r)dy h(zo,r)dr=0 t >0 (4.7)

for z E (0, 1] and h E Lip, .

Proof: Fix z0, and set f(t) = h(zo, t). The function

w(z, t) = K(z, y, t - r)f(r)dydr

satisfies the following boundary value problem:

Wt - W,. = (t)

w.(o, t) = o wS(, t) = 0

w(z, 0) = 0.

w is therefore a function of t alone, hence w, - 0 and w,, a 0.

This lemma implies the useful identities

1j, K.(z, y,t - r) [h(y, r) - h(zo, r)] dydr = 0 K.(z, y,t - r)h(y, r)dydr

and /'o oIjj K. (z, y, t - r) [h(y, r) - h(zo, r)] dydr = K..(zo, y, t - r)h(y, r)dydr

which will be used to simplify the nonlinear estimates which follow.

The first step will be to show that T maps a ball in Lip, to itself on the space BE, that is, we will show
that if E < 1 is sufficiently small

Ill - T[c]jj < Ill - cll (4.8)

for c E BE. Note that from (4.5),

Tc] - 1 [1t(0, t) - O'(t)] / [#(t)]
rt,1o (4.9)

+ 11 K..(O, y, i - r)[1 - c(u)]ut dydr / (4'()]

and

IlT[c] - Ill _< II1/0'(t)llll [,Pt(0, t) - #'(t)] II

+ II1/'(t)Il K..(O,y,t - r)(1 - C(u))u, dydr

We must carefully estimate the Lip1 norm of the operator K, defined by

h(z, t) S X[h = j K..(z,y,t - r)h(y, r)dydr (4.10)
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on the boundary z = 0.

Suppose that h(z, t) = z, we have (with some easy computations)
K..(z, y, t - r)h(y, r)dydr = jj K..(z, y, t - r)ydydr

= f K,(z,y,t - r) Y I,1 t- rt"/2 dydr

< Cltl 1/2

We see that Lipschitz functions in z are mapped to functions in C 1 2 with respect to t. This implies that

a function which is Lip, with respect to z and t is mapped to one which is Lip, in z and only C1/ 2 in t,
apriori.

It is precisely this loss of regularity, in t, which makes the analysis so much more delicate. The iteration

scheme is not a priori well defined unless there are additional conditions present which restore the range of
K to be a subset of Lip, in the time variable. The interaction between the nonlinearity and the overposed

boundary has the effect of restoring the smoothness. A similar phenomenon may be found in [8].

Using (4.7) we have the identity

jj K..(O,y, t -,r)[1 - c(u)]ut(y, r)dydr

= jj K,.(0, y,t -r) {(1 - c(u(y, r))]ut(y,r) - [1 - c(u(O, r))]ut(O, r)} dydr

= K,.,(0, y, t - r)[1 - c(u(y, r))] [ut(y, r) - ut(0, r)] dydr

+ K..(0, y,t - r) [c(u(O, r)) - c(u(y, r))] ut(O, r)dydr. (4.11)

To estimate the three differences appearing in the integrands of (4.11) we shall require Lemmas 3-5:

Lemma 3. c(u(z,t))- c(u(0,t)) _ CIclIllu.II.Iz12 .

Proof: The proof of this Lemma is a direct application of Taylor's Theorem, and the fact that u,(0, t) - 0.

Ic(u(Z, t)) - c(u(0, t))I. Icldu(z, t) - u(0, t)j

< jclt1u 3(0, t)z + u--( , t)z 2 /21 for some 0 < < 1

< CIclxll.,II-o zl2.

Lemma 4. 1 - C(tZt))l < C11 - c(U)II {IIU,,ll,,IZl 2 + IIUtll,,Itl

Proof: Using a Taylor series expansion of c(u(z, t)), we conclude

I1 - c(u(z, t)) I = 1 - c(u(O, t)) + c(u(O, t)) - c(u(z, t))

1 1 - C(u(O, t)) + Ic(u(O, t)) - c(u(z, t))I

= Ic(u(0, 0)) - c(u(O, t))I + Ic(u(O, )) - c(u(z, t))I

_5 Iclklu,(O, .)tl + II, I z2u,,( ., t)I
< Clcl1 {Iueloota + Iut0lzooZ2}

which proves the lemma since

IcI, <_ Icl1 + IlI - cl1. = III - c11. + 11 - c1 = II1 - C1

Lemma 5 is a fundamental a priori estimate for the direct problem.
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Lemma 5. Given c E BS, we have for E sufficiently small:

I u,(--,t)l 1_< C(E)

I u.. (-, t) _ C(E)

and

Iu,(z, t) - u,(0, t)I < C(E)IzI.

Proof: From (5, Section 4.5], we have the fundamental estimates that the solution of

u, - us& = f(z,t)

satisfies

Hut, uVull _< C1 + C211f11
where C depends only on the initial-boundary data. With f = (1 - c(u))ut, we are led to the estimate

Ilutl I ci + C211(1 - c(u))utII < c + C2111 - c(u)lllutII < C1 + C2EIluII

which leads to

C2E
The Lemma follows immediately from the definition of the norm.

Using these lemmas and referring to remark 2, we conclude that

Theorem 1. Under the assumptions on the data given by A1-A4, and if

_ 110 - 61ll11 + I'Ol
101(0)12

and

6= C(E)
1#1(0)12

satisfy c < (1 - 6)E, then for t < T and E sufficiently small, T( ] maps BE into itself. C(E) is a constant
which depends continuously on E.

Proof: Estimate each of the integrands in (4.11) using Lemmas 4, 5, and 3, respectively to obtain:

I K.(0, y, t - r)[1 - c(u)]ut(y, r)dydr

_ 11 IK,,,(0, y,i - r)l{Ich -C [Il UC,IIy 2 + It1,11ooT'] C(E)Iyl (4.12)

+ C(E)lc iIIU..wIoly12 }dydr.

In order to simplify this expression we use the estimates:

j IKz(Oy,'t - r)Iyldydr < c(O)t 12
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Taking a = 1 and f3 t 1 in the above estimates, (4.12) reduces to

j K..(O, y, l - 1r)1 - C(u)]u(y, -)dydTl

< Icl, C(E) lu.11. I [3/2 + t] + IcIC(E)Iu II0 t312

< IcliC(E)Ilu.jl t + IclIC(E)(IIu-ll + I)uIll)t 3/ 2

_< il - cll [C(E)IuzaIIat + O0(t3/2)]

Hence, from (4.9), and the above inequality, we have

__II't(O, t) - ( IIIll - Tjcjll. <5110 WI
inf,>o l1 (4.13)

+ il-cll [C(E)Ilu..llt + O(3/2)]inft>o 1"11

In order to compute the Lipschitz norms of c(O(t)), we use the fact that

lu = SuptIc((t)) - c(o(t2))l Itl - t21
h, h 1001) -- 002)1 Itl -- t2l

1 Ic((t)) - c(O(t 2))l
-f,>o 101 ,sup Itl - t21

Using a similar breakup of the integrals as in (4.11), one can show that

11 -T~c] I 1[¢ -5 Il ]II(inft>o 101)2 (4.14)

+ ll 111 [C(E)IIUSIIC +O(tl/2)]inft>o 1#'l 2

Combining (4.13), (4.14) we obtain

ll- T[o] 5 Rot - 911 .1 + inf 9'Ili
inf ,>o 111)2 1 >o

+ {[C(E)t >inf + C(E)] in> I2 }I I  c1I (4.15)

= l + il - cil

For t < T sufficiently small, we have e % c and 6 sz 6, and by the assumptions on c and 6, 11 - T[c]I < E
and the Theorem is proved.

This is sufficient for showing that T : BE -- BE. We therefore have a bounded sequence of iterates in
BE C Lip, with a subsequence converging in CO, strongly, for / < 1.

We must show that the limit is unique in order to obtain a solution to the inverse problem. We do this
by showing that BE contains an attractor for T, that is, there exists an element a E BE such that a is a
#-fixed point and

lIT[c ] - T[c]II -< 611c - ll 6 < 1
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for all c E BE. We note that

TNc] - T[e] = [#'(t) - jj Kgz(O, y, t - r) [6(fi) - c(u)] utdydr

+ ['(t)F- j K..(O, y, t - r)[1 - 6(i)](u, - Ft)dydr

" jj K. ([au) - c(u)] ut(., r)) dydr

+ jj K.. ((l - 6(fi)] [ut(., r) - a.(, r)] dydr

The only difficult term to estimate is the second integral in the last equality. If a is smooth enough so that
lIe(fi) - E(u)l _5 CEI1 6 - ull, that is if Property S of section 2 holds, then we may conclude that

liT[c] - T[6]ll _ [C(E) Ilucin 1 + 0(t)] lIc - all (4.16)

[inft>o 1011]2
where C(E) is a bounded constant, which depends continuously on E.

Consequently, if t < T is sufficiently small, and lu"loo/#'(O) is sufficiently small, then T[ ] is a contraction
on BE, with respect to a.

If we assume

A4*. The function 0(t) is such that there exists a c E BE with Property S such that u(O, t; c) = 0(t).

We then have,

Theorem 2. If A1-A3 and A4 hold then there is a unique solution to the inverse problem. Furthermore,
this solution c can be obtained as the limit of the iteration scheme (3.4).

We remark at this point that although this proof of a unique fixed point does not constitute an existence
proof (since we have assumed apriori the existence of a c giving rise to the overposed data), it is never-
theless constructive and yields geometric convergence to the solution. An existence proof would require a
characterization of the class of overposed data which is the image (under the heat operator) of BE. This is
known to be a difficult problem. A partial explanation is that C" initial-data, with homogenous boundary
data and forcing functions, leads to data u(O, t) = 0(t) which is analytic in t, and can be represented as a
Dirichlet series for t > 0.

V. Recovering an unknown thermal conductivity.

A related problem to the one considered in this paper is the recovery of the conductivity k(u) from the
nonlinear parabolic equation

u, - V. (k(u)Vu) = -f(z, t). (5.1)

The direct problem consists of (5.1) along with the same boundary conditions as for the determination of
c(u), that is initial data together with the specification of the flux on the lateral boundaries.

44 = (t) (5.2)



U(z, 0) = uo(z) (5.3)

The overposed data needed to recovr k(u) will again be given by

u(zo, t) = 0(t) zo E 090 (5.4)

In one space variable several results are known for this problem. Uniqueness of a solution pair (u, k) has been
shown by Cannon and Yin, [3], and Cannon and DuChateau, [2], have provided conditions that guarantee a
minimum to the quantity tju(0, t; k) - 0(t)[I in an appropriate setting.

The problem (5.1)-(5.4) has many similarities to (1.1)-(1.4). However the strategy of evaluating (5.1) on
the overposed section of the boundary, z = zo leads to a difficult scheme to analyze since k(u) is implicitly
defined in the equation. A common strategy (see for example, [2]), in dealing with this situation problem is
to introduce the change of variables v = fo k(r)dr. In the special case - = 0 and uo = 0 this leads to the
boundary value problem

c(v)vt - AV = 0

T= (t) (5.5)

v(X, 0) = 0

with the overposed data fCt)

v(zo, t) = j k(r)dr a 1,(0)

where c(v) = [k(10-'(v)]- '. Implementing the iteration scheme (3.4) by evaluating (5.5a) on the boundary
point z0 gives

Cn-(,L(0)) = T(1)[cn] = Av(zo, t; c.) (5.6)
vdz0, t; c.)

and the problem is reduced to a problem very similar to (1.1)-(1.4).

In the case of one space dimension, another strategy is possible. Let u(z, t) satisfy

U, - (k(u)u.). = 7(Z, t) (5.7)

with

-k(u(0,t))u.(0,t) = go(t) (5.8)

k(u(1, t))u:(l, t) = gi(t) (5.9)

U(z, 0) Uo() (5.10)

and let

u(0, t) 0 6(t) (5.11)

be given as overposed data. If we define u(z, t; k) to be the solution of (5.7,.5.8, 5.10, 5.11), then for k E C2

there is a unique strong solution to the direct problem. In this formulation, we are considering the condition
(5.9) as the "overposed data" and incorporating the measured Dirichlet data (5.11) into the direct problem.

On the boundary x = 0, we have from (5.9) that

k(O(t))u,(O, t; k) = go(t) (5.12)
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and this leads to the iteration scheme generated by

k(0(t)) = T(2 )[k] g0(t) (5.13)= T(2)[] -- - (0, t; k)'

Of course, in order for (5.13) to make sense, we must ensure that u,(O, t; k) is uniformly bounded away
from zero, but this can be achieved by giving appropriate conditions on the data. Numerically, (5.13)
has superior convergence properties with respect to (5.6), partly due to the compactness of T( 2 ) . Many
numerical experiments indicate that effective convergence of the scheme k,+ 1 - T# 2 [k,] is obtained in a
few iterations. This last scheme has many similarities to that used in [9] to recover the form of the nonlinear

boundary condition u. = h(u) from overposed Dirichlet data, in that the boundary operator rather than
the second order partial differential equation itself, is used to provide the update scheme. The fact that
lower order differential operators are involved in the update scheme appears to be responsible for its superior
convergence properties.

In a higher number of spatial dimensions, the interchanging of the overposed and primary data is not
possible as implemented above, but the following overposed boundary value problem case can be used to

obtain recovery of k(u)

u,- V . (k(u)Vu) = -

u(x,t) = h(z,t) x E ifi (5.14)

u(z, 0) = uo(z)

as the direct problem, and oveposed data given as the value of the heat flux at a given boundary point
xo E Ofl

OIL
k(u) = g(t) =o (5.15)

Equation (5.15) leads to the update scheme

k(O(t)) g(t) (5.16)
t) (Zo, t; k)

where 0(t) = h(zo, t) is known. The nonvanishing of the normal derivative 9u/8s at the point z = zo can
be guaranteed by imposing the condition that h(z, t) < h(zo, t) (at least in the case of -y = 0 and uo = 0
and with suitable modifications otherwise). This condition is necessary to guarantee that the entire range
of values of u(z, t) is contained on the line x = zo where the overposed boundary condition is imposed.
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1. Introduction.

Consider the following initial - boundary value problem

Ut - uzz = 9(x, t) 0 <x=< , 0< t< T(.)

u(z,0) = uo(z) 0 < < 1 (1.2)

u.(o,t) = f(U(0,t)) (1.3a)

-U(1,t) = f(u(1,t)) (1.3b)

Given sufficient smoothness on and knowledge of the function f(u), the above direct prob-

lem has a unique solution for u(z, t). However, we envision the situation where the function

f is unknown, save that it depends only on u, and wish to determine both u(x, t) and

f(u) by making additional boundary measurements. The solution of the direct problem

for a given function f will be denoted by u(z, t; f). For further discussion of the direct

problem and the modeling of such boundary conditions, see the monograph [1].
One of our assumptions will be that f(u) has fixed sign over its range, and without

any loss of generality, we assume that it is nonnegative. Given this, additional assumptions

are made on the data so that heat is being lost through the boundaries at x = 0 and x = 1,

and the temperature u(z, t) is decreasing in time for each position z.

Finally, overposed data

u(0,t) = h(t) 0 < t < T. (1.4)

is prescribed, and for compatibility this must be monotone in t. It will, in fact, be

monotonically decreasing.

Equations (1.1).- (1.3) describe, for example, the diffusion of heat in a uniaxial bar with

nonlinear radiation boundary conditions at the ends, our problem is therefore to determine

the unknown temperature - dependent radiation function f(u) from a knowledge of the

initial temperature distribution, and a measurement of the temperature u(X, t) at one

boundary.

If the heat loss occurs through boundary conduction, we may assume that the flux

is a function of the temperature difference. One commonly used model specifies a linear

relationship, (Newton's law of cooling)

= -k(u - u.).
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(Here, u/Ov denotes the derivative normal to the boundary.) On the other hand, black

body radiation into a vacuum (with zero ambient temperature) is governed by Stefan's law

U= u4

O9v

where a is Boltzmann's constant, If the body is partially absorbing, then we have

au = C'U 4

where e is the emissivity of the surface. If the emissivity is unknown, but temperature

dependent, we have boundary conditions of the form (1.3). If heat is lost through the

boundary through both radiation and conduction, then we must assume a more general

form of the law - as in (1.3).

This leads to an inverse problem for the unknown dependence of the flux on temper-

ature. We can also view this as a problem in nonlinear boundary control. If the boundary

satisfies a known radiation law
-= A),(1.5)

IOU

but the incoming flux Q is temperature dependent and unknown, we have

8u-

T= h(u) + Q(u) f(u). (1.6)

We now wish to control the temperature of the rod to the extent permitted by controlling

the temperature at one end. We seek to do this by controlling the total flux there. The

target set is the desired temperature response {h(ti)} and the unknown function Q(-) is

the control. We show that for any target set of monotone data, a piecewise linear function

f exists with the property that the solution u(x, t,f) to (1.1)-(1.3) with f - I satisfies

u(O, ti,,) = h(tj).

At best we will only be able to recover the function f(u) for those values taken on by

u(O, t) for 0 < t < T. It is thus necessary that the range of values of the function u(z, t)

for x E [0, 1] be contained in the range of values of u(O, t) for 0 _< t < T.

There are several special cases of the inverse recovery problem. First, if the boundary

conditions on x = 1 are known (and are independent of f), for example au, (1,t) +

f3u(1, t) = gi(t), then the direct problem may be solved by using the overposed data (1.4)

and the known boundary condition on z = 1. The flux boundary conditions on x = 0
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can then be used to recover f. Similarly, if two overposed boundary measurements are

used, one can recover two possibly different flux functions fi and f2. This also shows

that the problem of recovering a siagle flux function by means of two measurements is

overdetermined.

In addition, we require the overposed data to be monotone in t. This monotonicity

property is essential to recover the function f from a knowledge of f(h). No attempt to

completely characterize the class of allowable overposed data h(t) will be made. Instead

we assume that for some function f(u), the data u(O, t; f) is given, and show that the

unknown radiation function can be reconstructed from the overposed data. More precisely,

we prove under certain conditions that if the value of h is given at a sequence of points tj

for j = 1, 2,..., N, then there exists a piecewise linear function IN with slope changes at

the points h(ti), such that u(O, tj;fN) = h(ti), and lr IIf-frN 1 = 0. We define the
N-.oo 0 "

residual of the mapping from h - f as u(O, t; f) - h(t). Requiring the residual to vanish

at a discrete set of points tj, generates a collocation scheme.

In a recent paper [61, the authors proved the existence of a unique solution to (1.1) -

(1.4). The solution of the inverse problem was obtained by an iteration scheme using the

boundary condition itself as the update algorithm. Although the update scheme required

little computational cost to implement, each iteration involved solving a (nonlinear) direct

problem of the form (1.1) - (1.3), and required the data to be fairly noise free. The

method proposed here is entirely different, in that the algorithm needs only solve a linear

partial differential equation at each stage. Since the problem is clearly nonlinear in f, the

calculation of the slopes requires an iterative procedure such as the secant method. We

have performed several numerical experiments which indicate that the scheme is robust

under noisy data.

Our approach in this paper will be to first present some preliminary technical details

needed to set up the problem. We then state the main results in the form of several lemmas

and theorems. A thorough discussion of the algorithm and a numerical example is then

presented, followed by the proofs of all the lemmas and theorems in a separate appendix.

3



2. Preliminaries.

In this section our assumptions on the class of admissible data and radiation functions f

are given, and we introduce some notation that will be useful in the sections to follow.

In order to obtain an integral representation of the solution to (1.1) - (1.3), it is con-

venient to consider the function, w(x, t) that satisfies the initial boundary value problem

Wt - wzz=g9(x,t) 0<x<l1, 0<t<T

W=(0,t) =0 - w=(1,t) = 0 0 < t < T (2.1)

w(X, 0) = uO(x) O< < 1.

We note that w(z,t) = u(z,t;O) and the solution of (1.1) - (1.3) can be written as

u(x, t) = w(x, t) - 2 O(x, t - r)f(u(0, r))dr

- f I (x - 1,t- -)f (u(1,,-))dr (2.2)

where O(z, t) is the theta function defined for t > 0 by

O(X, t) = E K(x - 2me, t) (2.3)

in= - =

and K(x, t) 1ez 2 /' is the fundamental solution of the free space heat equation.

See [1].

The first lemma gives a regularity result for the forward or direct problem, that is when

f is a known function.

Lemma 1. Let u(z,t) satisfy (1.1) - (1.3) with f' E Loo and uo, g(z,t) sufficiently

smooth. Then for 0 < z < 1, 0 < t < T, the function u = u(z,t;f) given by (2.2) is

twice continuously differentiable in x and ut(x, t) is Cc, in t for 0 < a < 1/2.

Since we evaluate solutions of the direct problem on the boundaries x = 0 and x = 1,

the following properties of the theta function will be needed,

(1) 0(-z,t)=o(x,t) -oo<x<oo, t>0

(2) 8(-1,t) = E e - (k- 1/2)2/t S H1 (t). Hi(t) is a C' 0 function on [0, oo) whose
k=1

nth partial derivative in t, evaluated at t = 0, vanishes.
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01 1 oo 1-+ ---
(3) 0(0,t) = ;7 + Ho(t), where Ho(t) is C' on [0, oo)

with H0(o(0)= 0 for all n.

We introduce the notation t
SO(t) = 21 o(-1, t - r)O(r) dr (2.4)

AO(t) = -2 I (0, t - 1)4(T) dr (2.5)

The kernel of S is a C' function and S is an infinitely smoothing operator. The kernel

of the operator A has a singularity of order 1/2 and takes functions in C* into functions

in Ca+1 / 2 . If O(t) has a bounded L"O derivative then the equation AO(t) = (t) can be

written in the equivalent form, (c.f. [1]).

+(t) = {r' + I +H(t, )O(r) dr (2.6)

where H is a C' function. This equation is of second kind Volterra type and can be

uniquely solved for the function 4. Thus

= =A-'O = (I+ I) (2.7)

where IZ is the resolvent operator corresponding to the Volterra integral equation (2.6)

with smooth kernel H and

{k(0) + f '(r)dr }(2.8)
We will need some properties of the operators A and S.

Lemma 2. For any function O(t) with 0(0) = 0 and 4'(t) in LO,

sup 11A4'l, < C",/TIIIl[0n (2.9)
O<t<T

sup IIA-'S1 II.,[0 ,1 :- CTIlOIllOO 0, (2.10)

The values of the overposed data h(t) are assumed to be given at a discrete set of

points {tj} N , where to = 0 and tN = T. Let

At = sup(tj+l - tj) ,  0 < i < N - 1.
j
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The notation

HAI Ioo,[VI, 2] = sup I(V)t,

AII0',s = sup If(V)1,VE$

and

110110,[421  = sup I0(t)I
t1 :5t~t2

will be used. The interval will be ommitted when no confusion can arise. We use C

to denote a generic constant that may depend on the 0 function, the data, and various

Lipschitz constants, but will be independent of Akt or the function approximation to f

that will be obtained by collocation.

The following assumptions on f and the data are made:

Al. The function f(-) is nonnegative, f' E L'[0, oo) with <f't[ - M for some

fixed constant M.

A2. The initial data is such that u" is in C'"/2 , and the source term g(z, t) is C 1/2

in both x and t. Thus w(z, t) is a classical solution to (2.1).

A3. The solution u(x,t) to the direct problem (1.1) - (1.3) satisfies

range0 <,<tju(z,a)} C rangeo<.<t{u(O,s)}

for all x E {0,1] and t E [0, T].

In order to guarantee the a priori existence of a solution to the inverse problem (1.1)-(1.4),

we assume the overposed data h(t) actually arises from some admissible function f.

A4. There exists a function f(.) satisfying Al such that the solution u(z,t; f) to

(1.1) - (1.3) satisfies u(O,t; f) = h(t), where h is a decreasing function of t
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3. The Collocation Method.

The collocation approach to the solution of (1.1) - (1.4) can be described as follows. We

consider a function f, piecewise linear on each of the intervals [tj, tj+l], with the corre-
sponding function 5(x, t) S u(z, t; f) defined on 0 < x < 1, 0 < t < T and satisfying

ft - i = 9 (x, t)

u,(o,t) = f((0,t0), - u,(1,t =f(a(1,t) (3.1)

U(x,0) = UO(x).
Assume that f(v) is either known or has been approximated by a function f(v) for v >

h(tj). On the interval [h(ti+l), h(ti)] extend f by the linear function f(v) = cj(v -

h(tj)) + j(h(ti)), for some constant ci which should be chosen in order to satisfy (1.4) at
the next collocation point t = ti+l, that is to satisfy u(0, ti+1 ; f) = h(tj+,).

One particular difficulty is the lack of knowledge of a starting value for f(ho). We
denote the starting error f(ho) - f(ho) by E0 . We define k by

t - 0b =g(Xt) 0<x<1, 0<t<T (3.2)

,(z,0) = 0 0<z <1 (3.3)

?, (0, t) = e(t) (3.4)

0k(',t) =0 (3.5)

where e(t) is chosen to satisfy e(0) = E0 and so that 0 vanishes at the collocation points.

Essentially, the function 0 measures the propagation of an initial error in f.

The main results of this paper are:

Theorem 1. (Stability Theorem) If assumptions Al - A4 hold, and the initial error

if(ho) - f(ho) = Eo then for sufficiently small T, we have the following estimate

sup If- All 0,(ot) < C[Ilu - 5l 0,=o + Eo + IIA- 1 [u - - ']111 0,= 0]o<t<r

Theorem 2. (Convergence Theorem) If assumptions Al - A4 hold, then there exists a

unique piecewise linear function f such that the solution fi(x, t; f) to (1.1) - (1.3) with f
replaced by I satisfies (1.4) at each of the observation points t = ti, j = 0, 1, ... , N.

Furthermore, if the set of slope constants {cj }-N remain bounded then

sup l.f-(fil), - C [Eo + V/TAt*] for 0 < a < 1/2

In the next section, we show that the initial error can be made O(At) by choosing a

constant approximation to f on the initial interval. Consequently, we have
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Corollary. (Startup Error) If the set of slope constants {ci}j - N remains bounded, and

the startup error is O(At) then the collocation scheme converges globally of order p where

The proofs of these theorems are presented in the Appendix.

The next lemma is crucial to the well posedness of the collocation method. We show

that the boundary values of the direct problem depends monotonically on the radiation

function f

Lemma 3. (Monotonicity) Let (vi, fl) and (v2, f 2 ) satisfy (1.1)- (1.3) where assumptions

A1 - A4 hold for each solution pair. if f, >_ f2, then v1(z,t) _ v2(z,t) for all (x,t). In

addition, if for some t', f1 (v(1, t'))> f 2 (v(1, t')), then vi(z, t') < V2 (x, ).

Let us define the functions O0(t) and 01(t) by

00(t) = U(0, t - i(0, t (3.6)
01(t) = u(1,t) - i(1, t) (3.7)

Af(t) = f(h(t)) - f(h(t)) (3.8)

where u(z,t) and t(x,t) are the solutions of the direct problems (1.1) - (1.3) and (3.1)

respectively.

We have,

Lemma 4. Given the assumptions Al - A4,

[ii 1 ,[0,t] -<C(tII00(t)I[ o,t] + v-[IAf(t) oo,[0,t)" (3.9)

This says that the error in the approximation of the solution of (1.1) - (1.3) by that of

(3.1) is no greater on the "trailing boundary" x = 1, than it is on the "leading boundary"

z = 0 plus some contribution from the radiation at the boundary. On the other hand the

difference in the functions f and f must satisfy,

Lemma 5.

IlI I .,[oq < C ( JIol jo(0,] + c + IIA-[0o - ]j] ,,,t1 + t II II ,,, ) (3.10)

Given the collocation condition that 0(ti) = 0 for j = 0, 1 ... N we have the estimates,
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Lemma 6. f f' and f' E Lo, then for any 0 < a < 1/2 the function 0o(t) satisfies

sup I(t)- 1 <-C(At)l+a (3.11)

sup 1'(t) - OtI 1< C (At) .  (3.12)
O<t<T

We remark that if u and ft are smooth enough, then we obtain estimates of the form

sup 0 0 (t) _ C (At) 2  (3.9a)
O<t<T

sup < C (At) (3.10a).
O<t<T

Lemma 3 is the key to the method in that it guarantees that the piecewise-linear

collocation scheme is well defined. For suppose (u, f) satisfies (1.1) - (1.3), and that

u(x, t) for t < t' and f(v) for v > u(1, t') are assumed known. Then there is at most one

linear function - c(v - u(1, t')) + b that agrees with f at the point v = u(1, t') and such

that u(1,t") takes on a given value for some t" > t'. For if f, = ci(v - u(1,t')) + b >

f2 = C2(V- u(1,t')) + b with say cl > c2 , then from lemma 3, u(z,t; fl) > u(x,t;f 2 ) for

all t > t'. In addition, if over the interval [t', t"], either f > f or f < f, then it could

not be that u(1, t"; f) = u(1, t"; f).

Besides the simplicity of this method, the collocation procedure is quite versatile and

offers advantages over global recovery schemes. The fixed point recovery method for (1.1)

- (1.4) described in [6] is difficult to formulate for overposed data that is measured at

an interior point, or for the case of more than one spatial variable. Given any situation

where the overposed data depends on the function f in a monotone manner, the collocation

method can be carried out in principle.

Theorem 3. (Uniqueness Theorem) If assumptions Al - A4 hold then the difference

between any two solutions f, and fi is a function I(v) with an infinite number of zeroes

in any interval [vI, v2] C [h(T), h(O)],

Corollary. If assumptions Al - A4 hold, where f is analytic, then there is at most one

solution pair (u,f) to (1.1) - (1.4).

We remark that this condition on the difference of any two solutions fi and f2 being

a function with an infinite number of zeroes is identical with the situation obtained by

several authors for the reaction-diffusion equation ut - Au = f(u) where the function

f(u) has to be determined from overspecified boundary data, [2, 3]. Clearly, an infinitely

oscillatory function cannot be distinguished by a discrete set of boundary measurements.
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4. Analysis of the Algorithm and a Numerical Example.

In this section we describe a numerical implementation of the collocation scheme.

(a) Generate "'experimental data." Select a function f.act and obtain the solution u(.; fact)

to (1.1) - (1.3). The value of this function on the line z = 0 forms the overposed data,

and is passed to the inversion algorithm as h(t) at the discrete points ti.

(b) Assume that f(v) is either known or has been approximated by a function f(v) for

v < h(ti). On the interval [h(ti), h(ti+1 )] extend f using the linearized approximation

f(v) = Aj (v - h(tj)) + f(h(tj)), for some constant Aj which should be chosen in order

to satisfy the collocation condition u(0, t j+; f) = h(tj+1 ). We use a secant method to

calculate the slope Ai from the resulting nonlinear equation

(c) Step (a) is continued for each interval [tj, tj+1 ].

f.ct and f

/U

/!

There are some remarks to be made on the above procedure.

(1) How does one obtain the starting value f (h(0)) ? If the initial data and boundary data

ae compatible at t = 0 then we have f(h(O)) = u'(0) which determines f initially.

This will be the case if the process has been evolving for some positive time interval. If

the data are incompatible, we then use collocation on [ho, hi] to determine a constant

approximation to f on this interval. This results in an error which is O(Ah).

(2) The number of iterations required to obtain the slope A on a given collocation interval

will obviously depend on the tolerance required, and to the deviation of the function fact

from linearity on this interval, For most of the step sizes and values of an actual function

f, f.t we chose, about 3 iterations sufficed to obtain A to within the same accuracy
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as the forwards solution u(x, t; f). The cost of the method is therefore 2 or 3 times the

cost of solving a linear direct problem, since the approximation is by a linear function

on each of the intervals [ti, t+ I].

(3) An alternative method for this problem would be to let f depend on M parameters

{(cj,..., cj)}, and impose N constraints to determine the ci's by a least squares proce-

dure. In our problem this is not necessary because M = N, and for a parabolic equation

the values of u(xo,tl) do not affect the values of u(xO,t2) if tI > t 2 . Thus the value

of c, does not depend on the value of cj+. This allows the coefficients to be solved

sequentially. This gives the collocation method a computational edge with respect to

other global recovery schemes.

(4) The collocation method for this problem leads to an efficient scheme for obtaining an

approximating function f. The (almost) square root convergence of this approximation

to f, as a function of the stepsize At is a worst case analysis. The observed rate of

convergence for a wide variety of test examples was nearly linear. To find a value for the

slope of f over the interval [tj,tj+l] that matched ii(O,t) to h(t) to within sufficient

accuracy to be compatible with the rest of the numerical scheme required only a few

iterations of a procedure like the secant method. At each stage of this process we must

of course solve the direct problem over the interval [tj, tj+1] with our guessed value of

f. Since this is a linear function, we are only required to solve the heat equation with

linear boundary conditions.

(5) In [6], an iteration scheme was used to construct an approximating sequence to f(u).

Although convergence was quite rapid, (effective approximation was obtained within a

few iterations), each stage of this scheme required the solution of the heat equation with

nonlinear boundary conditions. This iteration approach did however allow us to obtain

an existence, uniqueness and stability result for the inverse problem (1.1) - (1.4). The

collocation method is not suited to this task. However, since it is based on monotonicity

of the data u(O, t; f) on the function f, we can use this to obtain a uniqueness theorem,

although this is weaker than that obtained by the methods of [6].

We choose f.ct = 3u - 2u 3 . The function u(x, t; fact) was calculated numerically and the

values of h(t) - u(1,tj;fact) at the points tj =j/N for j = 0, 1, ... , N, used as data for

the collocation scheme. We used a step size of k = 0.005 in time and h = 0.04 in the spatial
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direction. The table below shows the difference of f and f in the supremum and L2 norms

for various values of N.

Convergence rate of f to f, et.

N IIf.,t - ill, II/fc - fil L2

2 0.0889 0.0410
5 0.0389 0.0130
10 0.0173 0.0036
25 0.0080 0.0011
50 0.0051 0.0010

Notice that the convergence of f to fat appears to be nearly linear in At 1/N, rather

than the square root dependence obtained in the proof of Theorem 1. This is due to the

fact that the fact generating the data is analytic, which implies that the exact solution is

infinitely smooth. The apparent linear convergence is only asymptotic, and the last entries

of the above table are close to the limitations imposed by truncation error.

5. Appendix: Proofs of the lemmas.

We collect here the proofs of the lemmas used in the proof of theorem 1.

Proof of Lemma 1: Let f(0)=0 with f' E Lo and

u(t)= f'r) d.- o of(t - r) r

Differentiating once, in t, we get

t y't - r) d.
U(t) u'(t) = VF

Since

U(t + h) - U(t) = f'(r)[ 1 + t+h 1

Therefore

U(t + h) - .U(t)j < !f' [f t +h-Idr +  t h - dr

-< Cllf'11wh oo/2(l + log(h))
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We lose half a derivative due to the singularity of order 1/2 in the kernel. This carries over

to the solution of (1.1)-(1.3) via the representation (2.2) 1.

Proof of Lemma 2: From equations (2.7) and (2.8) we have using 0k(0) = 0,

o '(r) dr
A-1= - +R'

where 1Z is an integral operator with smooth kernel. The first equation, (2.9) now follows.

For the second part, we have

A-'SO(t) = 1 . H'(T - a)~t(s) ds dr + i{ H,(t - r)t(r)dr

since H, (0) = 0. The function H (t) is continuous and hence the kernel of the first integral

operator is integrable. Equation (3.3) is now immediate. ]

Proof of Lemma 3: The function v -V - v2 must satisfy

Vt -z = 0

v(X, O) = 0

V'(0t) - A(W0()) (,O =/ f(V2(o, t)) -f2 (V2(0,t))
-v,(O,t) - f (bo(t))v(1,t) = fi (v2(0,t)) - f2(v2(0, t))

for some functions o(t) and (t). Let a(z,t) be any function in C2([O, 1]) x C' ([O, T])

such that

oft - =zz = tz 2

and

a(o,t) = -1 (0io(t)), (1,t) = fA(6 (t))

and put w(z, t) = v(x, t)e ' ( '1t ). Then w(x, t) satisfies

Wt - Wzz + 2tzWz = 0

w(x, 0) = 0

w (O,t) = -O(O'=t) {f, (V2(0, 0) - f2 (V2(0, t)) > 0

-w'(1,t) - e-(l't){f,(v2 (1, t)) - f 2 (v 2(1,t))} >0

13



since fi _ f2. The maximum principle for the principal part of the operator now shows that

w < 0, and thus v, <5v2. The sharper conclusion of the second part follows from the fact

that if the boundary conditions in the above boundary value problem are inhomogeneous, w

cannot identically vanish. 0]

Proof of Lemma 4: If we substitute the pairs (u, f) and (ii, f) into equation (2.2) and

subtract we obtain

u(x, t) - ii(x, t) = 21 o(x, t - T) {f(u(O, r)) - f(ii(O, r)) } dr

-2 f O(x - 1,t - r) {f(u(1, r)) - f(i(1,r))}d. (5.1)

Evaluating this equation on the line z = 1, and expanding terms, gives

,t

1 (t) = 2] 9(1, t-r) {f(u(0, r)) - f (i(O,r))} dr

+2 f 0(1,t - r) {f(fA(O,r)) - 1i(0,r))} dr

- 2j9'(o0t - T-){f(U(1,T )) - f(fi(1,T-)) }d-

-2 o(0, t - r){f(u(1, -)) - f (u(i, T)) } dr

and thus

~~t
101(t)l <2M 10(l, t - r)l 0o(r)l dr + 1O1(l, t- r) I If(i(O, r)) -1f((, r)) I dr

+ 2M 10 (0, t - r)I 101(r)l dr + I 1(0,t - r)lIf (5(1, r)) - f(ii(i, r)) I dr.

By assumption the range of values of i! on the line z = 1 is contained in the range over

x = 0 for any interval 0 < t < T and by the collocation assumption A(O, t) = u(0, t) = h(t)

at each of the points ti, we have

0i1(t)l < 2M 190(1,t - r)l I0o(r)l dr + 10(1, t - r)IAf(r)dr

+ 1(0, t - r)IAf(r) dr + 2Mj 10(0, t - r)I il(r)I dr.

Applying Gronwall's inequality to the above inequality, noting that the function 0(0, t) has

an integrable singularity at t = 0, gives the statement of the lemma. 0

14



Proof of Lemma 5: We have the identity

u(z, t) - i(z, t) = /(x, t) - 21 B(x, t - T) {f(u(O, r)) - 1(ri(O, r)) - e(t)} dr

~t
-2 o(x - 1,t--r){f(u(1,,r)) -(i((1,.))}d-. (5.2)

Evaluating on the line x = 0 gives

Oo(t) = A {f(u(0, t)) - f(il(0, t)) - -(t)} + 0(0, t)

+ S {f(u(1, t)) - 1(fl(i, t)) }

expanding the arguments, and rearranging terms, we obtain the equivalent expression

A{f(i(0,t)) - f(!(0,t)) -e (t)} = A{f( (0,t)) - (u(0,t)) } + 0o- 0(0,t)

+ SIf (u(1, t)) - f (fi(1,t)) + f (i(1, t)) - .1(a(1, t)) I

or

fi(0, t)) - f((O, t)) = e(t) + f(f,(o, t)) - f(u(0, t)) + A'[ka - '/1
+ A-'S{f(u(1, t)) - f(ii(1, t)) }
+ A1S{f(((1, t)) - i(1, t)) }.

Since A-'S is an integral operator with an integrable kernel, we can apply Gronwall's

inequality to the function
f (i(0, t ) -/(fA(0, t))

and use the range assumption that

[i(1, 0), i(1, t)] C [(0,O'0), i(0,t q

to obtain

If(5(o, t)) - f(5(o, t)) 1 -- If(u(o, t)) - f(i!(o, t)) I + 1A-'[Oo - 011 + le(t)l

+ IA-'S{f((1, t)) - f((1, t))}

Using the uniform Lipschitz assumption on f, and (2.10), we obtain

Iff(a(o,t)) - /fi(O,t))I < Mfjo(t)l + IA-'[¢o - ¢]I + CMtl[ l,,,[o,,] + 1,(t)l.
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Taking the supremum of the right hand side (over t), we obtain the conclusion of the lemma.

0

Proof of Lemma 6: Since f is piecewise linear, with slopes ci we have If'[I o =

maxj= ,..., N{Cj}. Therefore, since (f - 1 - C)' E Lo and (f - I - = 0 at t = 0,

(ut - ilt - Ot) E C1' 2 [0, TI. By the collocation condition, u - f - 0 vanishes at the colloca-

tion points, and by the intermediate value theorem the derivative vanishes at some point in

the interior of each interval. This immediately yields the result

sup lu - t- ?P1 C (At)l+o (5.3)
O<t<T

sup jut - t -?ktj C (At)* (5.4)

O<t<T

for any 0 < a < 1/2. Note that it is only the smoothness of f and the initial error

(propagated through ?k) that limit the convergence rate. -]

Proof of Theorem 1: To prove Theorem 1, we substitute (3.9) into (3.10), collect the terms

involving IIAf 10,[, and sup over t E [0, T] with T sufficiently small. The estimate

essentially follows from the representation theorem, and is valid for any f E C'• The

procedure can be continued for large T by bootstrapping. 0]
Proof of Theorem 2: The fact that there is a unique piecewise-linear function f follows

from monotonicity. We use Lemmas 2 and 6 to obtain the stated bound. 0

Proof of Theorem 3: Let (u 1, fl) and (u2, f2) be two solutions to (1.1) - (1.4). We make

the assumptions that the data g(x, t) and uo(x) satisfy A3 and A4, and assume that both

fi and f2 lie in C* for a > 1/2. This last condition is to guarantee the existence of a

strong solution to the direct problem.

If f, (h(0)) > f 2 (h(0)) then for some t' > 0, fi(v) > f2(v) for h(t') <_ v < h(O). Lemma 3

then gives ui(z,t;fl) < u 2 (X,t;f 2 ) for 0 < t < t' and in particular u1(1,t) < u2(1,t) which

is in violation of (1.4), since both these functions must agree with the overposed data h(t)

at this point.

If fi (h(0)) = f2 (h(0)), and fi - f2 does not vanish identically in a neighborhood of h(0),

then there is a t' > 0, such that for h(t') < v < h(0) either f1 (v) > f 2(v), or f,(v) < f2(v),

or f,(v) = f 2 (v) + f (v) where f is a C' function with an infinite number of zeroes in any

neighborhood of h(O). In the first two cases lemma 3 once again gives a contradiction with
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(1.4). The last case is precisely the statement of theorem 2, and the corollary is a direct

consequence. C]

Note that if the data and f are sufficiently smooth then the solution u will be C 2 in time,

globally. For f piecewise linear, i! will be C2 in time on the boundary between collocation

points {ti }, but not globally. (The discontinuities of the derivatives of ii on the boundary

can occur only at the collocation points.)
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1. Introduction.

In population dynamic models that consider the age structure of the species, we are interested in
finding p(a, t), the number of individuals of age a alive at time t. The total population P(t) of the
species is then given by P(t) = foL p(a, t) da, where L is the mazimum life span of the species. The
first mathematical model along these lines was proposed by Lotka. In this treatment one assumes
as known, a birth function 3 and a death function X. 3(a)da and \(a)da are the probability of
an individual of age a giving birth or dying in the interval a to a + da. The functions 3 and A
depend on the age a of the individual. Further, to incorporate cooperation or competition between
individuals of the species, they should be considered to depend on the total population P(t) or
possibly on p(a, t). In this paper we restrict our attentions to the linear model.

One standard problem is the following; given an initial population with age distribution 0(a) E
p(a, 0), and the functions /3 and A, determine the time evolution of the population p(a, t). We
shall refer to this problem as the direct problem. In the case where A and 03 are functions only of
age, the models of Lotka, [Lotka, 1956], and McKendrick [McKendrick, 1926] leads to respectively
a linear integral or a linear differential equation to be solved for the function p(a, t). A nonlinear
model where the birth and death processes depend on the total population was introduced by
Gurtin and MacCamy [Gurtin and MacCamy, 1974], and Hoppensteadt [Hoppensteadt, 1974].

In practice, it may not be possible to monitor a species sufficiently closely in order to obtain a
good approximation to some of the parameters required for the solution of the direct problem. In
a recent paper, [Rundell, 1989], it was shown that one could recover an unknown birth function
from overposed data consisting of the total population, a quantity that may be much more easily
determined by an experimenter, over an appropriate time interval. Problems such as these are
usually referred to as inverse problems. Another situation that can occur is when one is unable to
accurately compute the value of the initial age structure, that is, when it is difficult or impossible
to take a census. In this paper we investigate the possibility of determining the initial age structure
0(a) from a knowledge of the birth and death functions and the total population P(t) measured
over an interval of time equal to a lifespan of the species. We show that conditions can be imposed
on the data that will guarantee a unique solution of the inverse problem, and that the stability of
the recovery scheme depends on the behaviour of the death function near the maximum life span.
We also investigate the problem of recovering an "initial" age structure 0(a), assuming as known
A and /3, from a knowledge of the age structure p(a,T) at a later time T. Thus we attempt
to recover unknown census data at a previous time by using information on the birth and death
process and census data taken at the present.

We have performed numerical experiments to investigate the feasibility of the methods we introduce,

and some of these are presented in this paper.



2. Notation and the solution of the Direct Problem.

We let L denote the maximum life span of the species, and use p(a, t) to represent the number
of individuals of age a alive at time t. We use A = A(a) to represent the death function, and
#3 = #(a) for the birth function. The differentials Ada and Oda represent the probabilities of an
individual dying or giving birth in the interval (a, a + da) respectively. The function

ir(a) = exp{-A(r) dr} 1

is called the life table of the species, and is the probability of an individual living to age a. r(a) is a
smooth monotone non-increasing function of age, satisfying 7r(O) = 1 and ir(L) = 0. B(t) = p(0, t)
is the birth rate at time t and can be written in terms of the birth function as

B(t) = j p(a, t)P(a) da. (2)

The initial age distribution 0(a) is given by

p(a,0) = 0(a),. (3)

It will be convenient to introduce the weighted variables (a) = 0(a)/wr(a), and the net maternity
function b(a) = 3(a)7r(a). It can easily be shown that if the life table, birth rate and initial age
distribution are known then p(a, t) can be computed and is given by, ([Keyfitz, 1968] or [Webb,
1985])

p It)= r(a) (a - t) if t < a;(4

"''' = (a)(t -a) if t > a. (4)
In fact (4) can be used to show that B(t) must satisfy the Sharp-Lotka equation

B(t) = j b(a)B(t - a) da + j b(a) (a - t) da (5)

valid for t < L. We also note that if b vanishes on the interval a2 < t < L then we have on this
interval

B(t) = j b(a)B(t - a) da. (6)

If t > L, B(t) satisfies

B(t) = j b(a)B(t - a) da. (7)

The first integral in (5) represents the births from those individuals born in the interval (0, t], while
the second represents the births at time t from the initial population. Given 1, r and 4), this

linear Volterra integral equation of the second kind can be uniquely solved for B(t). The total
population alive at time t, P(t) = f p(a, t)da, is given by the relation

P(t) = j r(a)B(t - a) da + ir(a) (a - t) da (8)
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It can be shown that if 0, A and 0 are nonnegative, continuous functions on [0, L), then p(a, t)
is continuous on [0, t) and (t, L), with at most a jump discontinuity at a = t. From equation (4)
the function p(a, t) will be continuous at a = t if and only if 0(0) = B(O) - fo' P(a)q(a)da. We
do not impose this requirement on our model.

In McKendrick's equivalent formulation of the direct problem [McKendrick, 1926], p(a, t) is given
by the solution of the first order hyperbolic equation

ap (9)
OP+ + A(a)p = 0, (9)

with the initial-boundary conditions formed by equation (3) and
"L

p(Ot) = /o (a)p(a,t)da. (10)

This approach will be useful in the reconstruction of the initial distribution from the values of
p(a, T) for some later time T.

Some remarks on notation.

The rth derivative of a function f(t) we denote by f(")(t).

We let £[f] denote the Laplace transform of a function and we denote by f * g the convolution
0' f(t - s)g(s)da.

For a function f(s) defined on the interval 0 < s < L we define f(s) = f(L - a).

The following result is elementary, but will be used sufficiently often in this paper to merit separate
attention.

Lemma 1. For any continuous functions k and g defined on a subset of [0, oc) with k not
identically zero there is at most one solution of the convolution equation k * f = g. If k and g
have m continuous derivatives with k(r)(0) = 0 for r < m while k(m)(0) 0 0, then there exists a
continuous solution f of the convolution equation and this solution depends continuously on the
functions k( n) and g(,) in the supremum norm.

Proof: For the first part, note that by extending as a constant to all [0, oo) we can form the
Laplace transform of the functions and obtain the relation £[k].C[f] = C[g]. If the convolution
equation had two solutions fi and f2 then their difference f would satisfy C[k].f[f] = 0. Since
the product of the two analytic functions 1[k] and C[f] cannot vanish identically unless one of the
is identically zero, we obtain that £[f] = 0 and hence f = 0.

For the second part, if we differentiate the convolution m times, using the fact that k(r)(0) = 0 if

r < m, we have the second kind Volterra equation k(n)(O)f(t) + f k(m)(t - s)f(s)ds = g(m)(t).

A continuous solution to this type of equation exists provided that the kernel and right-hand side
are continuous, [Linz, 1985]..

This result cannot be improved upon, that is, we cannot expect continuous dependence of the
solution f to the convolution equation k*f = g unless the above conditions hold. A counterexample
will be provided later in the context of the inverse problem.
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Recovery of initial distribution from total population

We shall make the following assumption on the birth and death processes,
Al. For some positive integer m > 1, 7r(a) and 3(a) are 2m+1 times continuously differentiable

on [0, L]. 3(a) is nonnegative and has support contained in the interval [a,, a2] where
0 < a, < a2 < L. r(a) is a monotonically nonincreasing function with 7r(O) = 1 and whose
rth derivative r(r)(L) is zero for 0 < r < m, but 7r(m)(L) 6 0.

rhese assumptions should be valid for a wide range of species. The behaviour of ir(a) at the
maximum life span L will be crucial to our analysis. By definition this function must vanish at
a = L, but the issue is whether its derivatives do likewise. For humans in a developed society it
may very well be that T(r)(L) - 0 for all values of r, but this is unlikely to be true for any species
for which the aged are under increased environmental pressure. As we will see, the larger the value
of m, the more ill-conditioned the inverse problems will be. In our numerical runs we have used
m=1.

We assume that the function P(t) is known for 0 _< t < L and satisfies

A2. P(t) is m + 2 times continuously differentiable on the interval [0, L]
We can rewrite equations (5) and (8) in the form

B(t) = (b B)(t) + Til(t) (11)
P(t) = (,r • B)(t) + @I2(t) (12)

where

9 1 (t) = b(a)(a - t) da (13)

'P2(t) = j r(a)O(a - t) da (14)

Lemma 2. The functions %P1 and T 2 are related by IF,(t) = ff 7(a - t)* 2 (a) da where 7 (t) is
the solution of

0L-tb(t) = fo (a + t)-y(a) da, (15)

or equivalently

b(t) = j f(t - a)-7(a) da. (16)

The function -t is m times continuously differentiable on [0, L] and - vanishes identically on
[0, L - a2 ].

Proof: We have t (t) = fo b(t - a)k(a)da and T 2(t) = f0r(t - a)¢(a)da, that is, '' = b* and
'P2 = *$.

4 u l ll l n mmm mmm m n l~ ur l N ,,, n l -



Now

j 7@ - s)'I2(s) d.s = j0 ~ y -S) j0 f(s - a).O(a) da d s

- f Z 7 (t - s)i(s - a) dia (a) da

- j j 7(t - a - s)t(s) d3 (a) da

- jt b(t - a)(a) da
= 1 (t)

where we have used (16). This gives

t(t) = Y(t - .)'P2(s) da

= f- -I(t + a - L)'P'2(a) da
-t

or L

IF1 (t) = ft - )02(a)da

Note that since r(L) = 0, a differentiation of (15) will lead to another Volterra integral equation
of the first kind for -f. Since 7r(")(L) 0 0, m + 1 differentiations will convert this to a second kind
Volterra equation

b(m+l)(t) - (-1)"{Tr()(L) 7 (L - t) + 7r(m+')(a + t)7(a)da} (17)

from which 7 can be uniquely recovered. The fact that 7(t) is zero for 0 < t < L - a2 follows
from assumption Al and (16).

This completes the proof of the lemma.

From (11) and (12) we obtain

lr , B = T ,b B + 7r * +T

b* P = b* * B + b* ' 2

and hence

%P2 -b* 'P2 + I ' = P- b* P.

Using lemma 2 and some amount of rearrangement we can write this as

1@2(t) + ] K(t,a)@ 2(a)da = d(t) (18)

where

d(t) = P(t) - J/ b(t - a)P(a) d¢i
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and

K(t, a) = fr(t - a + s)7(s)ds - b(t - a) a < t,
Tft (t - a + s)-y(s)ds a > t.

The continuity assumptions on - and w show that K(t, a) is m+ 1 times continuously differentiable
in a and t for t 4 a.

For a<t and 1<r<m+l we have

=r a -() (t -a + s)y() ds -b(") (t -a)

Consequently,

lir - - I V()(s)7(s) ds. (19)
a- Ort 1

For a > t and 1 < r < m + 1 we obtain by using the properties of 7 and its derivatives at t = 0
that

O rK a-1 a+ )
Or Z rk(O) 7 ("-1k)(a - t) + r()(t - a + )-f(s

and hence

ir Or K t (s)ds (20)a-t+ Ori; = 00

Equations (19) and (20) now show that K(t, a) and its partial derivatives up to order m + 1 are
continuous for 0 < t < L.

The operator Kf = fL K(t, a)f(a)da is compact and thus has only a finite number of eigenvalues
in the exterior of any neighborhood excluding the origin. Furthermore K is neither symmetric
nor definite. If the value -1 is not in the spectrum of the operator then there will be a unique
solution to (18). This condition depends only on the birth and death functions. It is difficult
to give conditions on these functions that will guarantee the solvability of (18). Numerically one
can compute the spectrum of K, in particular the eigenvalue with largest negative real part. For
all reasonable functions ir and 03 that we investigated, this eigenvalue had significant complex
component. We will therefore assume that

A3. The functions 7r and /3 are such that the spectrum of K does not contain the point -1.

We now show how to recover €. The regularity assumption A2 shows that d(t) is m + 1 times
differentiable. Thus a solution of (18) will possess m + 1 continuous derivatives in view of what we
have shown about K(t, a)

By differentiating (14) m + 1 times and using the fact that 7r(")(L) = 0 for r < m, we obtain

4,T 0 M L - t tM+ ) a

(= (-1)m{()(L)(L t)+ 1 r +)(a +t) (a)da

or

2 '(L - t) -T()(L) Nt) +10 r+(L - t + a)(a) da (21)
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From assumptions Al it follows that the second kind Volterra equation (18) has a unique continuous
solution on [0, L] that depends continuously on the functions %p(n+l)(t) and r(mn+l)(a) in the
supremum norm. From (18) and Lemma 1, this means that depends continuously on the functions
r(m+l)(a), #("+)(t) and P('+l)(t), in the supremum norm.

We thus have shown

Theorem 1. If the birth function and life table satisfy assumption Al, A2 and A3, then there
exists a unique initial age distribution O(a) which gives rise to an observed total population on the
interval [0, L].

Remarks:

1. The assumptions Al - A3 are not sufficient to guarantee that the initial function O(a)
will be nonnegative, which is the only admissible class of such functions. From a practical
standpoint this is not a serious objection since any physically observed P(t) must come from
a nonnegative initial distribution.

2. From the above it is clear that one must provide the values of the overposed data on an
interval of length L. If this interval is in [T, L + T] then this analysis shows that one can
recover p(a, T). When T = 0 this recovers the initial population structure p(a, 0) E Oa).
In the next section we will discuss the problem of determining O(a) from overposed data
p(a,T).

Recovery of initial distribution from census data

Here we assume that the functions ir(a), 3(a) are known as well as the function O(a) which is
equal to p(a, T) for some fixed T > 0.

For this inverse problem we will require slightly different conditions on the birth and death processes.

B1. For some positive integer m > 1, 7r(a) and /3(a) are m + 1 times continuously differentiable
on [0, L]. 7r(a) is a monotonically nonincreasing function with r(0) = 1 and 7r(L) = 0.
,3(a) is nonnegative, has support contained in the interval [a,, a2] where 0 < at < a2 < L,
and 3(')(a 2 ) 0 0.

For the overposed data Ob(a), we require

B2. O(a) is an m + 1 times continuously differentiable function on [0, T) and on (T, L]. It
has at most a jump discontinuity at a = T in the case that T < L. If T < a2 then the
compatibility condition l(r)(O) - foT /(a)O (r)(a)da + f /3(a)b(')(a)da holds.

Note that we are imposing a boundary condition of the support of the birth function, rather than
on the death function as we did in the previous section.

We first show that we can construct the birth function B(t) over the range 0 < t < T.

In the case T < L we have from (4) that

= p(a, T) = 7r(a) (a -T) if a> T,

i.r(a)B(T- a) if a<T,
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and thus knowledge of 4b(a) implies that we may simply read off the values of (a) for the range
0 < a < L - T. To recover the initial distribution for ages a > L - T we must use the information
provided by tk to obtain the birth function B(t) over the range 0 < t < T. We assume that B is
continuous at t = 0, so that B(0) can be recovered by its limit as t -- 0. The occurence of the
term 7r(a) in equation (22) suggests the utility of working with defined by (a) = (a)/7r(a).

We illustrate the above ideas in Figure 1 below.

Fig 1.

Op Op
a D

T p(a, T)

B(t)

a
L -T T L

The Sharp-Lotka equation gives for T < t < L

T ~ tL

B(t) = J0 b(t - a)B(a) da +]IT b(t - a)B(a) da +]i b(a) (a - t) da

and since ftL b(a)tO(a - t)da = foj b(a + t)O~(a + T)da is !cnown for T < t < L we have that B(t)
satisfies the equation.-

B(t) - ITb(t - a) B(a) da = a I(t) for t > T (23)

where ai(t) = f b(a)ik(T + a - t)da + ftt T b(a)O(T - t + a)da is defined for T < t < L and can
be computed from ir, /3 and O/~(a).

By lemma 1, equation (23) can be solved uniquely for the function B(t) for t > T and the continuity
of a, (t) shows that this solution will be continuous on (T, L].

From the fact that b(0) =0, we can show that

lim B(r) (t) -lim al)(t) = 1 )r[ /3(a) i()(a)da + [Lf(a) ;(r)(a)da}
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From (22) it follows that

lim B(r)(t) = (-1)y (r)(0)
t-T-

From the Sharp-Lotka equation it follows that if 0b is continuous (actually even if 0 is piecewise

continuous) then the birth rate B(t) must have the same differentiability as the net maternity

function b(t). Thus the condition

T LT
(")(0)- 0 O(a)i(r)(a)da + I P(a) (r)(a)da

on the overposed data is necessary if it actually arises from a physically reasonable initial distribu-
tion and a smooth birth function.

Suppose now that nL :_ T < (n + 1)L for n > 1. Then 0(a) = p(a, T) being given, implies that

B(t) is known for T - L < t < T. We show this implies that B(t) can be recovered over the range

max{O,T-2L} <t<T-L. For t> L,

B(t) = b(a)B(t - a) dat
= i L b(t - a)B(a) da

= IT-L b(t - a)B(a) da + J b(t - a)B(a) da.

-L I,- L

If t > max{L, T - L} then both B(t) and ft-L b(t - a)B(a)da are known. This implies that the

function a 2(t) which is equal to their difference is known for the range max{L, T - L} < t < T.

This leads to the convolution equation

T-L
02 (t) = j b(t - a)B(a) da (24)

which can be solved uniquely for B(t) for t in the range max{O, T - 2L} _ t < T - L. By

continuing this argument we can reconstruct the birth function B(t) over the range 0 < t < T.

Note however that each time we compute B(t) over an interval T - (n + 1)L < t < T - nL from

previously computed values on the interval T - nL < t < T - (n + 1)L we must solve a first
kind convolution integral equation whose kernel vanishes to order m at a = 0. Clearly the more

times we have to solve this ill-posed problem the more inaccurate our knowledge of the function

B(t) will be. Thus we should expect that if T < L then recovery of B(t), which entails solving
the second kind equation (23), should be straightforward and the solution obtained should depend

continuously on the data 7r, 3 and 0. If T > nL then we must solve n first kind equations of
the form (24) in order to recover B(t) for 0 < t < L. Thus the longer we wait to take the census

that provides the values of i(a), the poorer we should expect any reconstruction of the initial

distribution to be, and that a significant difference should occur if T is chosen to be greater than
the lifespan L, and a further degradation should be encountered as T is allowed to exceed each

subsequent generation.
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Having recovered the function B(t) for all t > 0, the Sharp-Lotka equation gives the following
representation for 4 on 0 < t < L

b(t + a) (a) da = B(t) - Jo b(i - a)B(a) da =- 3(t).B~t)

This can be rewritten as the convolution equation fo b(L - t + s))(s) ds = a3(L - t) and since j3
vanishes identically on the interval [a2, L] this is equivalent to

1t(L-4
2 )

-  b(L - t + )(s)ds = a3 (L- t) (25)

from which it follows that there is at most one function 4 defined on the interval [0, a2) that solves
the inverse problem. A necessary condition for a bounded solution of (25) is that the function a3(t)
vanish with its m + 1 derivatives at the point t = a+ .This is a further condition on B(t) which
corresponds to a condition on the overposed data.

As in the previous problem we can convert (25) to a second kind equation by m-+ 1 differentations.

-b(")(a 2) (t) + j b(' +)(a 2 - t + s)4(s) ds = a3m+ )(a 2 - t) (26)

and obtain the uniqueness of a continuous solution 0(a). Here the fact that I3(?n)(a 2) 6 0 is crucial.
Once again we have not given any conditions that guarantee a nonnegative solution.

In the case that T < L we may utilize the information that 0(a) = 0'(a + T) for a < L - T and
rewrite (25) as

t, L-T
T b(a2_-t + s) (j) ds =a3(a2_-t)_- b(a2 -t+s)2(a+T)da for L-T < t < a2 (27)

The above analysis demonstrates the recovery of the initial age distribution for the range 0 < a <
a2 . What about the interval (a2 , L)? If T > L - a2 then we can never recover these values. Those
individuals in the initial population whose age is greater then a2 do not participate in the birth
process and have all died within a time period of length L - a2 .

Given the remarks following lemma 1, we would not expect that the initial data 0(a) would depend
continuously in the supremum norm on the function V(a) or any of its derivatives. That this is
so can be seen by taking &, (a) = VyX[0, 1/n], and considering the values it imposes on the final
data On(a) = p(a, L) at a time equal to the lifespan. We assume that and 7r are CI functions.

Tn'(t) = f0 -t b(a + t)-On(a)da, and thus for any integer r

T 1nL() b(r)(a + t)& (a) da

fl/n

v'no b(r)(a + t) da
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and thus
sup I _( (t)I <5 sup b(')(a).
_- _L O<a<L

For any r, the function T(O(t) tends to zero in the supremum norm as n --. oo, but &n does not
tend to a continuous function. The Sharp-Lotka equation gives B,(t) = fo b(a)B,(t - a)da + q' (t)

and by lemma 1 we see that B()(t) will also tend to zero as n -o oo for any r. Since ln(a) =
p(a, L) = ir(a)Bn(L - a) this shows that the final data, tn(a), and all its derivatives can tend
uniformly to zero as n --+ oo, yet the initial distribution fails to converge to a continuous function.

Some numerical experiments

In order to demonstrate the feasibility of recovering the initial age distribution from 0, A and
either P(t) or p(a, T), we give the results of some numerical experiments. By this means we hope
to show the extent to which numerical recovery of the initial age distribution can be recovered and

some of the complicating factors in the process.

It was assumed that the birth function /3 and the life table function 7r were known. The maximum
life span L was chosen to be 10. We used a life table 7r(a) as shown in figure 2. This was
constructed by taking a cubic function passing through the points (0, 1), (1, 0.8), (7, 0.3) and
(10, 0). If desired, a death function A(a) can then be obtained by setting A(a) = 7r'(a)/7r(a). We
used two slightly different birth functions /31 and /32 as we show in figure 3. The first of these

satisfies the conditions of Al, and is a a twice continuously differentiable function on [0, L] with
support on the interval [2,8] The function /32 is similiar except it has a discontinuity in its first
derivative at a =/32 as required by B1.

In order to procure data for the inversion process we took an initial function O.ct(a) as shown in
figure 2 and solved the direct problem numerically to obtain either the value of the total population
P(t) over an interval [0, L], or p(a, T) for some fixed time T > 0. This overposed data, as well as

/3(a) and 7r(a) were passed to the inversion routines to recover q(a).

Fig 2. Life Table and Actual Initial Distribution
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Fig 3 Birth Functions
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These functions are not meant to represent actual values for any particular species, but they contain

some of the features common to a large class of population structures.

Some details on these numerical procedures will now be given.

For the first numerical test, we used the birth function 31(a), solved the direct problem using

4'.,(a) to obtain a total population function P(t) at a discrete series of gridpoints t on the time

interval 0 < t < L. A plot of the function P(t) resulting from these values of r, '1 and Oct is

shown in figure 4.

Fig 4 Plots of the Overposed Data
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The values of P(ti) were then passed to our inverse solving code to attempt to recover the values

of 0. To achieve this we recovered in succession the functions 7, f2 and finally 4. For the first

and third of these we must solve a first kind Volterra equation (16), or convert it to second kind by

differentation, and for the computation of 'F2 we need to solve a second kind Fredholm equation
(18).

Where do the difficulties lie? Throughout we assume that both r and 3 are able to be computed

exactly. Thus in theory we can solve for 7 to within any precision demanded. Numerically, the
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question is whether to solve the Volterra equation as a first kind equation, (16), or second kind
form, (17). The conventional wisdom is to take the former approach, especially if the evaluation
of the kernel and free term may be subject to error. While we have assumed this is not the case
here, there is another factor to consider. Virtually all algorithms for solving first kind Volterra
equations of the form fo k(z, t)f(t)dt = g(z) assume that the kernel k(z, t) does not vanish on the
diagonal z = t. Violation of this condition leads to instabilities. Rather than obtaining increased
acccuracy with decreasing stepsize, this case gives increase in accuracy with diminishing stepsize
only for sufficiently large stepsize. As the stepsize is further reduced the solution loses accuracy
rapidly. This phenomenon is typical of ill-posed problems. In our problem if we use equation (16),
k(x, t) = 7r(L - x + t), and the non-vanishing condition is violated. In fact k(z, z) = 0 for all
z. We therefore took the compromise approach of repeatedly differentiating the equation until the
resulting kernel had a non-vanishing diagonal, but stopping short of the full conversion to second
kind which would require differentiating the equation one more time. For our situation, since we
are assuming that m = 1 in Al, we therefore differentiate equation (16) once and determine 7 as
the solution of

b'(L - t) = j '(L - t + a)7(a) da. (28)

Here the kernel satisfies k(t, t) = ir'(L) 0 0. The value of r'(L) is approximately -0.2. We solved
the above equation using a discretization method based on the midpoint rule, [Linz, 1985]. For the
second stage we must recover T 2 as the solution to (18). We solved this equation by the Nystrom
method [Baker, 1979], which converts the integral equation to a linear system of equations. The
kernel of the integral equation depends only on 7r and 7, and with our assumptions we should
be able to evaluate this accurately. The free term d(t) depends on r, 06 and also the measured
population P(t). Depending on the quality of this data we may or may not be able to accurately
compute the free term. Any inaccuracies in this will be magnified by the condition number of
the matrix of the system. Of course, if there is an eigenvalue of this matrix near the value -1
then this condition number could be very large. We investigated a wide selection of reasonable
values for the birth and death functions and in no case was there a problem with the matrix
inversion. For the values of 7r and 3 shown above the resulting matrix has condition numbers of
approximately 9.5 for the case of 31 and 2.8 for the case of /2. Thus the error made in the recovery
of 4 should be of a similar order of magnitude to the error in the observed P(t). There are still
some difficulties however. It follows from equation (14) that the function 9 2(t) should satisfy the
necessary conditions T 2(L) = C(L) = 0 for recovery of a bounded initial distribution 0(a). From
the integral equation (18), since K(L,a) = Kt(L,a) = 0, it follows that the function d(t) should
satisfy d(L) = d(L) = 0. Given errors in P(t) this will, in general, not be true. Thus although the
magnitude of the error on the computed values of T 2 may be small, and the average value of the
relative error small, the relative error in the vicinity of the point t = L may be considerable. This
will significantly affect the computation in the third stage. We must solve equation (14), and once
again we are faced with the question of whether to differentiate this equation prior to numerical
solution, and if so, how many times. The issues are slightly different from those encountered in the
first stage. The kernel is identical in both cases, but whereas the free term in (16) was assumed
to be known to high accuracy, this may not be the case with equation (14). Since errors made in
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solving a Volterra equation for small values of t will always contribute to the solution for later t,
it is imperative to have good starting values. However, the values of O(a) for a small will depend
on the values of @2 near L, which is precisely the place where this function has the largest relative
error. This factor gives the greatest contribution to the error in effectively computing the initial
distribution 0.

With sufficiently accurate data on P(t) we were able to recover the values of the function .0 to
within any desired accuracy. We then ran the inverse code with a value of P(t) that had a certain
percentage of noise added. To achieve this we added normally distributed random values to the
(accurate) overposed data computed by the direct solver. This noisy data was then smoothed by a
smoothing spline routine before being passed to the inverse solver. In figure 5 we show the results
for 1% and 3% noise in the overposed data P(t). The function O.ct is shown as a dashed curve.

Fig 5. Computed 4 with noise in P(t)
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We also did similar computations for the second inverse problem. Results are shown in figure 6 for
5% and 10% error in the overposed data. We used 62 as the birth function, and used a value of 6
for the final time T. The results are shown in figure 6

Clearly, the second problem is less sensitive to noise in the overposed data than the first. There are
several reasons for this. First, we are computing the function O(a) over a shorter range, 4 < a < 8
in this case. Second, we have to solve one first kind and one second kind Volterra equation when
p(a, T) is the overposed data. The overposed data only appears in the free term of the first of these
equations, (26). The values obtained from this equation are used to compute the free term for the
second equation (23). In both equations the kernels can be computed directly in terms of 7r and 0.
In contrast, when P(t) is the overposed data, the solution of a first kind Volterra equation is used
to compute the kernel of a second kind Fredholm equation, and the result used in another first kind
equation. Thus the errors tend to amplify with each sucessive computation, and there are simply
more of them (and more ill-posed ones) in the first inverse problem. Third, although (27) is first
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Fig 6. Computed with noise in p(a, T)
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kind with the kernel k(t, a) such that k(t, t) = 0, when we differentiate this equation the resulting
equation has a kernel that does not vanish on the diagonal, and in fact for the function #2 we have
02(a 2 ) = -0.8, which is a relatively large value, and allows an accurate and stable scheme to be
used in the recovery of 0(a).

What would happen if we used 02 in the recovery of 0 with P(t) as the overposed data or the
function /61 when p(a, T) was overposed data?

In the analysis of section 2 we assumed that the birth function had 2m + 1 continuous derivatives,
which in our examples requires that # be thrice continously differentiable on [0, L]. This is true
of 01, but certainly not the case for (2 which has a discontinuous derivative at a = a2 . To test
how lack of regularity in the birth and death processes affects the numerical recovery of -(a) we
ran the above codes with accurate values of P(t) but using /2 in place of /1. The values obtained
had no relation to 0.,j whatsoever. A similar result was obtained when we used i1 in the second
inverse problem.

The explanation for this is as follows. With the function 31, (which was built in such a manner to
have 3 continuous derivatives) we had a continuous free term in equation (15), which was used to
recover the function -7. With (2 the free term is discontinuous and mathematically one must expect
the same to be true of the 7 obtained as a solution. This has significant effects on the accuracy of
the quadrature schemes used to solve the Fredholm equation (18) the kernel of which depends on
integrals of -y. Thus even although we may compute the free term d(t) (depending on 7r and P)
accurately there will be numerical errors in the evaluation of the kernel of this equation. Indeed
K(t, a) will not be continuously differentiable in t and therefore neither will be the solution 'P2 .
Once again we will have errors in '2, and these errors will manifest themselves as oscillations due
to behaviour of the derivative. When we attempt to recover 0(a) from (14) it may in fact be better
to solve this first kind equation without prior differentiation since we prefer not to differentiate the
free term 1p2. However, without differentation, the numerical schemes for solving the first kind

15



equation will be limited to low accuracy by the restriction on the stepsize. In practice we found
that when we replaced 31 by a virtually identical function except that we joined its component
parts so that only the first 2 derivatives were continuous, we were able to effectively recover 0(a)
from accurate overposed data. However, for a given set of grid sizes the error in computing 0 was
more than ten times the error in computing the initial data with 01. From a numerical as well
as a mathematical standpoint the regularity assumption Al on the birth and death functions are
therefore necessary.

As noted above, we were unable to recover 0(a) from p(a, T) when 31 was the birth function. The
condition 0'(a2) 3 0 is essential for the stability of the numerical schemes. In order to determine
0 from 7r, 01 , and p(a, T) we modified our procedure slightly.

There are two different, but closely related, possibilities in dealing with the fact that both 01(a2)

and 1(3a 2) are zero. First, one could modify the function 81 in a small neighborhood of the point
a = a2 so that it was continuous on [0, L], twice continuously differentiable on [0, a2), and the
derivative at a = a2 was non zero. Second, one could retard the argument of 01 in equation (27),
effectively solving this equation with the value of a2 replaced by a2 - c in both the kernel and
free term. This gives k(t, t) = b(a2 - C) which is now nonzero for c > 0. How is c chosen, or
the modification near a = a2 selected for maximum performance? How would you know you had
obtained such a maximum? One possible method is to fine tune the choice of parameters using
known solutions. The result obtained by retarding the argument in the kernel, choosing E = 0.3,
is shown in figure 7.

Fig 7. Computed 0 using modified 32
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The relatively large errors near the point L - T = 4 are due to inaccuracies in the Volterra solver
from inaccurate evaluation of the kernel (which depends on b(a)) near the point a = a2 where
0(a) was. modified. Of course, we could smooth the function 6 near this point, using the accurately
determined values for a < L - T and the reasonable well computed values for a larger than and
away from L - T. In addition, we could modify the result to guarantee a postive solution. These
would significantly improve the results obtained.
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1. Introduction.

This paper considers the problem of determining the unknown coefficient A in the first order
hyperbolic equation

pt(a, t) + p.(a, t) + Ap(a,t) = 0. (1.1)

Equations such as (1.1) are ubiquitous, but our choice of independent variables indicates a particular
application we have in mind; a stands for age, t for time and the density p(a, t) denotes the number
of individuals of age a at a particular time t. We assume A > 0 and in this case A denotes a
death function, Ada being the probability of a death occurring to a given individual in the time
period a to a + da. Since this quantity should depend on the age of the individual A depends
on a, and in the case of competition, should also depend on p(a, t). This dependence may be in
fact be on the total population at time t, P(t) = f p(a, t)da, and there certainly are circumstances
where A = A(a, P) is the appropriate model. While we are using the language of age structured
population dynamics, our " species" could be also be mechanical parts, p(a, t) would denote the
number of parts of age a still in service at time t, and A would be age dependent rate of failures.

In addition to (1.1) we would normally be given initial-boundary data; typically the initial age
distribution p(a, 0) together with information on the boundary a = 0. This may be the actual
value of p(O, t), (the number of new parts put into service at time t) or an equation involving this
quantity, such as p(O, t) = f ,3(a)p(a, t)da. The latter case of a non-local boundary condition is
the usual one. in population dynamics, I(a) is the birth function and #da is the probability of an
individual of age a giving birth in the interval a to a + da. Thus the usual direct problem (or a
simplification of such) is: given the value of p(a, 0), boundary data along a = 0, and the death
function A; compute the value of p(a, t).

In practice our knowledge of the death process may be incomplete. Even in the case when A
depends only on a we may not be able to obtain accurate data on the age of death or failure. The
case A = A(a) is the age structured equivalent of the familiar Malthus law, and to obtain a more
accurate picture some dependence of A on either p or P must be assumed. How can such a law be
determined, and what are the reasonable experiments that would allow the recovery of the death
function? In the language of inverse problems, what overposed data can be prescribed that allows
the determination of the coefficient A?

In the second section of this paper we shall show that one can recover the value of A - A(a)
from a measurement of the age structure p(a, T), -.t a later time T and the specification of p(O, t).
For the case of the boundary condition p(O, t) = f P(a)p(a, t)da, we show that the inverse problem
can be reformulated as a nonlinear integral equation for the death function, and indicate how the
equation may be used to recover this function.

In the third section we consider the problem of determining the dependence of the death
process on total population. We will not attempt to recover an unknown function A of the two
independent variables a and P. As a minimum this would require giving overposed data that
corresponds to a function of two variables, and this is more than we envision as being reasonable.
Instead we shall assume that A(a, P) has a known form and that the dependence on age has already
been determined. Two possibilities give reasonable physical models: In the first we assume that
the death rate is a simple sum of the natural and environmental rates, that is, A has the form



AN(a) + AE(P), where AN is the death rate due to natural causes and AE is the death rate due
to the environment. In the second case we assume that A(a, P) = AN(a)[1 + AE(P)]. The first
form assumes that the environmental pressure is the same for all ages, the second assumes that it is
coupled to age so that environmental pressure is greater on the age group with a high natural death
rate. We expect that AE is small for relatively small values of P, so that A ; AN(a) and that the
process is well understood in this case. The problem is to extrapolate this knowledge to attempt
to recover the dependence of A on P when the latter may strongly affect the death process.

Here the appropriate overposed data could be the value of P(t) itself since frequently this is a
quantity that is easy to measure. We shall show that one can in fact recover AE from knowledge of
initial-boundary data and P(t) over some range. For each of these recovery problems we consider
the two types of boundary condition, B(t) E p(O, t) given and p(O, t) = f 03(a)p(a, t)da. As
expected, the second of these leads to a more complex recovery procedure.

The direct problem involving (1.1) can be considered to be well understood, even when A and
0 depend on p, and possibly in a non-local way. On the other hand, comparatively little work has
been done even for the most obvious inverse problems. This is not to say that the importance has
of identifying the birth and death processes has not been acknowledged in the literature. This is far
from the case, but most of the model testing has been confined to the identification of parameters
that appear in assumed forms rather than the recovery of the actual functional relationship. In
previous work the authors have investigated the problems of recovering the initial distribution
p(a, 0) from certain overposed data, [6] and the determination of the birth function j3 from a
measurement of total.population, [7].

We introduce our notation and some of the ideas used in the solution of the direct problem for
(1.1). We shall take as our vocabulary the language of population dynamics.

By C[a, b] we mean the usual space of functions continuous on [a, b] and the norm on this
space we denote by 11 ... 1 [a,bJ • Several subsets will be used. CM is the subset consisting of those
functions whose range lies in the interval [0,M]. C+ [a, b] is the subset of non-negative valued
functions on [a, b], and Co[a, b] is the subspace of functions that vanish at the left endpoint a.

We shall drop the interval indication when no confusion can arise. We assume that the species
has a maximum life span of L, although this quantity may be infinite. In order to ensure that death
must occur by age L, the (strictly positive valued) death function must satisfy f0L A(a, .)da = oo.
Consequently A will be singular if L is finite. In the case of a linear model where the death
function depends only on the age a, it is useful to use the life table function 7r(a) defined by
ir(a) = exp(- fo A(s)ds). This is a strictly decreasing function of a with ir(O) = 1 and 7r(L) = 0.

It is the probability that an individual will live to age a.
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2. Recovery of an age-dependent death rate.

We seek to recover the pair of functions (A, p) from

pt + p + A(a)p= 0 (2.1)

with the initial condition

p(a,o) = (2.2)

one of the boundary conditions

p(O, t) = B(t) (2.3a)

p(O, t) = j103(a)p(a, t) da (2.3b)

In order to achieve this we must give some additional information, which we refer to as overposed
data, since if A were known, the prescription of other information would lead to an overdetermined
problem. We shall use as overposed data

0(a) = p(a, T) (2.4)

which corresponds to the value of p(a, t) at a later time T. Thus, we are given the conservation
equation (2.1), one of the renewal laws (2.3), and the results of two censuses taken a time period
T apart.

Instead of the unknown function A, we use the life table r. Once r has been determined we
can recover A as the logarithmic derivative of this function.

Of the two boundary conditions, (2.3a) leads to a considerably easier recovery problem, and
we shall consider this case first.

If we integrate equation (2.1) with A = A(a) along characteristic coordinates, we obtain

p(a, t) p(O, t - a) e- f" )(a)d if a < t; (2.5)
O (a - t) e- L (-)d° if t < a.

Note that if (2.3a) is used, that is the Dirichlet data p(O, t) = B(t) is prescribed, then (2.5) with
t = T can be solved directly to recover A(a). If T < L then we have the explicit solution

.L logB(T-a)if a <T;
if aI J (2.6)

A(a -T f-I1 fa>T

and if T > L then only the first of these equations is required. It is therefore clear that if a physically
meaningful solution A(a) is to obtained, then the above equations constrain the admissible data,
B, 4. In fact in order to obtain a continuous solution A(a) to (2.6) it is necessary that 0, 4' and
B(t) be positive and continuously differentiable on [0, T) with to having these properties on [0, L].
The nonintegrability condition f0 Ada = oo will in fact follow from O(L) = 0. The positivity of
A depends on the interaction between the overposed data 4 and the data for the direct problem
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q5 and B. Even in the relatively straightforward case of (2.3a) there are enormous compatibility
constraints, and these will be greater when boundary condition (2.3b) is used.

The second equation in (2.6) shows that if T < L and if A(a) has been recovered for a < T,
then we can obtain the values of A(a) over the remaining interval (T, L) in terms of the initial and
final data. This is true regardless of which of the boundary conditions (2.3a) or (2.3b) are used.

The second case, where the renewal law uses the specification of the function 03, is more
complex. If we integrate (2.5) in a from a = 0 to a = L, then we obtain the Sharp-Lotka Equation

t L O(a - t)B(t) = B(t - a)P(a)T(a) da + (a)r(a) daf0 it ( a 
where ir(a) = exp(- fo' A(s)ds). The birth rate B is a function of 7r rather than prescribed data,
and we use the notation B = B(t; 7r). Let us assume that T < L for the moment. For a given
function w(a) defined on [0, L] we can define the mapping 7r -+ B( • ; r) where B is the solution
of the second kind Volterra equation
B(t) = B(t-a)P(a)ir(a)daj+ j (a)O(a-t) l-() da+ j (a)¢(a -- -t) da. (2.7)

0 T ST(a -t)
Here S is that operator that maps the values of a function with domain [0, L] to one defined on

[0, T] by
0 r(a) if0 < a < T;

a{ir(a)} if T < a < 2T;
Sir(a) = 2 {r(a)} if 2T < a < 3T; (2.8a)

and a is defined by

a- (a)} 0(aT) r(a - T) (2.8b)

and uses the second line of equation (2.5) to map values of r on [T, 2T) onto values on [0, T].
Using this we can now write the first line of equation (2.5) as

((a) Ti7r] (2.9)

B(T - a; 7r) -

We can view (2.9) as a nonlinear equation for the restriction of the function ir(a) defined on the
interval [0, T]. If we have obtained a solution of this equation, then we can extend it to successive
intervals [T, 2T], [2T, 3T], ... , using (2.8). It follows directly that the function 7r(a) must satisfy
the endpoint conditions 7r(0) = 1 and r(T) = O(T)/€(O). Can we show that the mapping T has
a (unique) fixed point, and if so, can this fixed point be obtained by the usual iteration scheme

7r,+, = T[ir,]? (2.10)

An alternative formulation that eliminates the function B can be obtained by using the first line
of (2.5) to get B(t) = O(T - t)/7(T - t) and then from (2.7) we have, writing p(t) = 1/7(t)

O(t)p(t) = [ (T - t + a)O(a)P(T a)da + /3(a)O(a)p t) da
Jo p(a) a)

+ L 3(a)O(a - p(a) t) da.
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We can consider this as a nonlinear, second kind integral equation for the unknown p(t). It is to
be noted that one can show that both sides of the abobe equation or monotone functions of A, but
not necessarily monotone in the variable p.

The difficulty in any analysis of the mapping T is in the relationships between the overposed
data 0 and the functions 3 and 0. Even in the case of given B(t) this was a complex relationship.
It can be shown that IB(a,ri) - B(a,r 2) _ C17r,(a) - 7r2(a)I for some C that depends on the
data 0, 3 and 0. This leads to the inequality IT[ri] - T[r2]I 5 Clrl(a) - T2(a)I, and if we
can impose conditions on the data that guaranteed 0 < 1 then we could invoke the contraction
mapping theorem to answer our questions. We were not able to find any reasonable conditions on
the data that lead to this condition. We can also show that T is a compact map on the space
of functions that are continuous on [0, T] and satisfy the bounds i(T)/I(O) . ir < 1. If it could
be shown that T mapped this set to itself we would obtain an existence result using Schauder's
theorem. Once again we are prevented from carrying out the idea by the interrelationship of the
data.

However, we have attempted several numerical implementations of the algorithm defined by
the iteration scheme (2.10) and convergence to the actual solution was rapid, if the starting value
was taken as the straight line joining the known endpoint values at a = 0 and a = T, the relative
error decreased to within a few percent in 3 or 4 iterations.

3. Recovery of a Nonlinear death rate.

We consider the problem of recovering a population dependent death function A(a, P). As men-
tioned in the introduction, we shall look for a A in one of two forms; either A(a, P) = AN(a){1 +
f(P(t))} or A(a,P) = AN(a) + f(P(t)), where AN(a) is a known function. Thus we seek to
determine the dependence of A on the total population under the assumption that we know the
age dependence of this function. In many physical models this is realistic since, if the total pop-
ulation is much smaller than the carrying capacity of the environment, it is to be expected that
overcrowding would play a negligible role in the death process, that is A 2, AN(a). The values of
such a AN may be known, or could have been obtained from the methods of the previous section.
From physical principles we expect f(P) to be a nonnegative function, monotonically increasing
in P with f(O) = 0. In our mathematical model we shall require f to satisfy only the first of
these conditions. It will turn out that both of the above forms for A lead to similar mathematical
problems, so that we shall present the details for one and only briefly point out the differences
presented by the other.

We thus seek to recover the pair of functions (f, p) from

Pt +p. + A(af)p = 0 (3.1)

with the initial condition

p(a,O) = 0(a) (3.2)

and either of the boundary conditions

p(O, t) = B(t) (3.3a)

or
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p(O, t) - j (a)p(a, t)da - 0 (3.3b)

and the overposed data

P(t) = j0p(a,t)da (3.4)

which are prescribed over some interval 0 :< t < T.

Since the unknown f only appears in the form f(P(t)), we shall make the change of variable

I(t) = f(P(t)). Thus f is uniquely recoverable from I provided that P is monotonic, a condition

we shall require. In order to indicate the dependence of p on f we shall write the solution of the

direct problem (3.1)- (3.3) by p(a,t; f).

For a solution pair (p, 1) we require that 1 E CM for some M > 0, that p(a, t) have continuous

partial derivatives on (0, L) x (0, T) except on the line a = t and that (3.1), (3.2), (3.4) and one

of (3.3) holds.

We shall deal with the case A(a, P) = AN(a){1 + f(P(t))} for the moment and make the following

assumptions on the prescribed data:
L

Al. AN(a) is a continuous, positive function on [0, L) with fo AN(a)da = oo. 3(a) is continuous

and non-negative on [0, L].

A2. 4O(a) is a continuous, non-negative function with O(a) exp(fo AN(s)ds) uniformly bounded

on [0, L].

The condition on AN ensures that all n- imbers of the population must die by age L. The condition

on 6 states that the initial population be consistent with the death process A = AN.

We shall denote by D(t; f) the function fL AN(a)p(a, t; f)da. Thus D(t; 0) corresponds to
the case when the death process is independent of the population, and in the case of this linear

model we can interpret D(t; 0) as the death rate at time t.

We consider the case of the boundary condition (3.3a) first. In this case we assume that the

prescribed birth function and the overposed data P(t) satisfy

A3. B(t) is a continuous, positive function on [0, T.
A4a P(t) is continuously differentiable, positive and strictly increasing function on [0, T] such

that for some M > 0, B(t) - (M + 1)D(t; 0) _< P'(t) <_ B(t) - D(t; M) for 0 < t < T.

We shall also assume that the birth rate at t = 0 shall be compatible with the initial data,

B(t) - foL 3(a)O(a)da = 0(0). This condition will hold in the case of an already evolving process,
and is made to simplify the analysis. At the end of this section we indicate how this (technical)

assumption may be removed.

We show that the solution to the inverse problem can be reduced to showing that a certain
mapping of the function f has a fixed point. We do this by showing that the map is contractive.

This also leads to a natural iteration scheme that may be used to compute the function f. In

setting up this structure we will also show that the map is a compact, isotone map on CM where
M is as in A4a. This not only leads to an alternative existence proof but shows that the sequence

of iterates converges monotonically to the solution of the inverse problem.
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Differentiating (3.4), we have

L
P'(t) - pt(a, t; f)da

= -p. (a,t;]) Ap(a,t; 1)daIL
= p(Ot;)- oAN(a){1 + ](t)}p(a,t;])daL
= p(O, t; i) - {1 + 1(t)} j AN(a)p(a, t; I)da

where p(L, t; 1) = 0 by assumption. Hence

1(t) = p(0,t;f) - P'(t) _ 1- T]. (3.5)]()=f°L AN(a)p(a, t; 1)da

In the case of boundary condition (3.3a) this gives

B(t) - P'(t) - 1 (3.6)T, =fO Alv(a)p(a, t; ])da

and for condition (3.3b)
Tb~]- f1L #(a)p(at; ])da - P(t) (3.7)

foLAN(a)p(a,t; I)da

In either case, this suggests that we look for a fixed point of the mapping T = Ta or Tb, and seek
a solution of the inverse problem by the iteration scheme

jn+1) = T[fy()] (3.8)

for some suitably chosen initial approximation fo. It is straightforward to show that I will be
solution of (3.1) - (3.4) if and only if 1 is a fixed point of the map T on a suitably defined subspace

of C[O, T].
In the case of condition (3.3a) we can in fact prove the following theorem

Theorem 1. If assumptions Al - A4a hold, then there exists a unique solution f E CM to (3.1),

(3.2), (3.3a) and (3.4). This solution can be obtained as the limit of a monotonicaly increasing
sequence {l, }=O where I,, is defined by (3.8) with T = T. and Jo = 0.

Proof. The solution to the direct problem (3.1), (3.2) and (3.3a) can be written in the form

P(a, t; B(t - a)e- fL )s(i)(1+/(i-e+a)Ida if a < t; (3.9){ (a - t)e- fT )"(a-t+a)(1+I(8)]d& if t < a.

Thus for all (a,t) E [0, L] x [0,T] and for I > 0

p(a, t; f) < max{(IBI [0,, 1 1111 [0,L"
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Also if 11(t) _ 12(t) for all t E [0, TI then it easily follows from (3.9) that p(a, t; fl) :_ p(a, t; f2) for

all (a,t) E [0,L] x [0,T]. The positivity of AN now shows that D(t;11) S D(t;f 2) for 0 < t < T,

and hence from (3.6) T.[i(] 12 T.[12]. Thus T. is an isotone map on C+[0,T] and T.[f] is

continuous on [0, T] for any I in CM. Also

B(t) - P(t) _1<T[ 5B(t) - P(t)

D(t; 0) D(t; M)

Assumption A4a now shows that 0 S T. [1] < M and thus T. : CM - CM.

We shall use the notation, A(a) = foa AN(s)ds, (a) = exp(- fo AN(s)ds) and 4(a) = O(a)/r(a).
By assumption A2 this last quantity is uniformly bounded on [0, L].

Let fl, f2 be in CM and restrict t for the moment so that t < L. We have that

D(t; i) - D(t; 12) = AN(a)B(t - a)w(a)(e- fo AN(a)]t-a+e).d

+ AN(a)4(a - t)r(a)[e 1 :- Af - N(s) y (t-a+° )da - e- i: AN(.)2(t-a+&)d8]da

Using the inequality e-1 - e- Y < z - y gives

ID(t; fl) - D(t; 12)1 < IIB1l 0,71 o Ajv(a)r(a)A(a) da -Ii - J2111o,71

+ XN(a) (a - t)r(a)[A(a) - A(a - t)I da - I1 - 1211[0,71

Now

AN(a)r(a)A(a) da = - ] 7r'(a)A(a) d

= 1 - ir(t) - A(t)e -A(t)

and

tAv(a)(a - t)x(a)[A(a) - A(a - t)] da < II10,LJ] AN(a)r(a)[A(a) - A(a - t)] da

= IIIlloL) {ir(t)A(t) + [AN(a) - AN(a - t)]r(a) da}

where we have used 7r(0) = 1, r(L) = 0 and A(0) = 0 and the fact that A is an increasing

function. Let
C1(t, AN) = I -7r(t) - A(t)e - A(t)

C2(t, AN) = e-A(t)A(t) + jL [AN(a) - AN(a - t)]e -A() da

It follows that 0 < C1 < 1 for t E [0, LI and limt-. C1 = 0, while C2 satisfies

C 2 (t, AN) !5 1 + j AN(a)e - A(a) da + j AN(a - t)e - A(0') da

< + r(t) - r(L - t)
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so that C2 is uniformly bounded on [0, L]. The above estimates show that [AN(a) - AN(a -
t)]e-A(6)da is integrable on [0, L] and thus limt_. C2 = 0.

We therefore have

[D(t; I1) - D(t; 12)1 < C(t, B, 4), AN)IIf1 - 21110,71 (3.10)

where
C(t, B, 0, AN) = C(t, AN)IIBII 10,7 + C2(t, AN)Il I 10,L1

Note that C is independent of A1 and 2, is bounded on [0, L] and limt.o C = 0. Thus

IT.[ - T.[f]I < IB(t) - P'(t)I .JD(t; 11) - D(t; 12)1

D(t; f1 )D(t; f2)

IB() - P'(t)i ; ) - D(t; 12)1

_ ClA -f2111o,71

where C = C(t, AN, B, 4p, M, P) is independent of Al and f2 and limt..o C = 0. Thus for some
fixed r, depending only on M, B, 46, AN and P

sup IT.[i] - T.[2]1_5 all/, - f2111o,7 (3.11)

where a < 1. Thus on the space C[0, r] T. [f) will be a contraction mapping, and will have a
unique fixed point in C[0, r]. By the bootstrap procedure we may extend this solution to all of
[0, T] by progressing in increments of r.

This shows that the iteration scheme defined by (3.8) will converge to the fixed point of TG.
To show monotonicity of this sequence we first observe that T. is an isotone mapping on CM and
that A4a implies T. [0] _> 0 and T. [M] _< M. Now if Ik is any bounded sequence in CM it is
easily seen that D(t; Ik) is an equicontinuous family since D(t; fk) < D(t; 0). The Ascoll-Arzela
theorem shows that T. is a compact map on CM. These facts provide a separate existence proof
and the further property that the sequence {f,} defined by f,,+, = T. [I], io = 0 converges
monotonically to a fixed point of T., [1]. If instead, fo = M, then f,, is a decreasing sequence
converging to a fixed point of T.. Of course, from (3.11) these fixed points must coincide. This
completes the proof of the theorem.

For the case of boundary condition (3.3b) our program is the same, except that Tb as defined
by (3.7) now has the additional factor of the unknown "birth function" foL 1(a)p(a, t; f)da, which
also depends on f. We shall still be able to show that Tb is a contraction on a subset of C[0, T],
but we cannot expect that Tb will be an isotone map, since this will depend on the relationship
between AN(a) and 0(a). Thus, although we will be able to show that Tb has a unique fixed point
which can be approximated by the sequence generated by (3.8), the sequence need not converge

monotonically and perhaps not for all fo in our admissible class C+ [0, T].
We shall have to modify our conditions on P(t); there is a further complication added to this case
by the fact that Tb is not monotone. Now it is no longer sufficient to verify that TO] > 0 and
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Tb [M] < M in order to claim that T maps CM into itself. Actually we will not attempt to obtain

an upper bound for the solution f; we will be content to show that Tb [f] >_ 0 if f > 0, for then we

can show that Tb maps the subset C+ [0, T] into itself and if Tb is a contraction, then the existence

of a unique fixed point is guaranteed. For this problem we make the assumption

A4b P(t) is continuously differentiable, positive and strictly increasing function on [0, TI such

that P'(t) _< foL (#(a) - AN(a))p(a, t; f)da for all functions f E C+ [0, T].

Assumption A4b says that the rate of change of the total population cannot exceed the

difference of the birth and death rates, for any admissible functions f. Since this condition involves

the unknown f, it is not particularly satisfactory and will be difficult to verify in practice. However,

it is not easy to give an easily-checked condition on P(t) that will guarantee that TbWill map

C+ [0, T] into itself. Although the function p(a, t; f) will be a monotone function of f, we cannot

use this information to obtain correct bounds on P'(t) since the function /3(a) -AN(a) must change

sign on [0, LI. To see this last fact, note that in order for P(t) to be increasing the net birth rate

must be positive. This cannot be the case if 0 < AN for all a E [0, L). On the other hand, /3 is

bounded and AN is unbounded at a = L. We are thus left with the "average condition" indicated

in A4b. However, assuming the model is exact, the practitioner can be satisfied that any measured

data P(t) must have come from a physically reasonable, and hence positive f. Thus there will be a

fixed point in C+ [0, T] to which the iteration scheme will converge. The monotonicity assumption

on P is to enable the function f to be recovered from f.

Given this we can prove:

Theorem 2. If assumptions Al, A2 and A4b hold, then there exists a unique solution f E

C+[0, 7 to (3.1), (3.2), (3.3a) and (3.4). This solution can be obtained as the limit of the sequence

{If}0fi where f,, is defined by (3.8) with T = Tb and fo = 0.

Proof. First observe that since /3(a), 46(a) and AN(a) are positive it is easily shown that p(a, t; f)
will be non-negative for f 0. For f, and f2 in C+[0,T] we let Ai(a,P) = AN(a){l+f,(P(t))},

i = 1,2. If p(a, t; fl) and p(a, t; f 2) are solutions to (3.1), (3.2) and (3.3b) then p(a, t) = p(a, t; fl)-
p(a, t; f2) is a solution of

Pt + P. + A,(a, P)p = F(a, t) (3.12)

p(a,0) = 0 (3.13)

and

b(t; fl, f 2) := p(0, t) = ] /3(a)p(a, t)da. (3.14)

where

F(a, t) = AN(a)p(a, t; f1)[f 2(t) - f, (t)].

Using integration along characteristics we can easily show that p(a, t) satisfies

fg e- fe' A2(-t+"P(??))d"F(a - t + s, s)ds if t < a.p( a, t) =

b(t - a)e- fo Ad,P(t-a+s))da fa e- fo A('7,Ptt-a+))d'?F(s, t - a + s)ds if a <t;
(3.15)
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where b(.) = b(-; fl, 12) is given by (3.14). Substitution of (3.15) into (3.14) leads to the following

second kind Volterra equation for b(t)

b(t) = jo b(t - a)e- fo A0("P(t-+a))dI 3(a)da + T1(t) (3.16)

where

Ip (t) = it {Lt e- f: A(a-t+sP(a))d, \N(s)p(a - t + 8, s; fl)[f2 (a) - 11(s)]ds Ida

+ j j e .iA(aP(t-a+s))d \N(s)p(st - a + a; fl)[12(t - a + s) - 11(t- a + s)]ds da

We can draw two conclusions from this. First if Al(t) :5 2(t) on [0,T], then T(t) > 0. This in

turn shows that b(t) _ 0 and thus from (3.15) that p(a, t; fl) _ p(a, t; f2), so that p(a, t; f) is

again a decreasing function of f. Thus p(a,t;f) :_ p(a,t;O) for f E C+[0,T]. Second,

sup I ''()I < C(t, AN, 4, P) sup 12 (s) - 1(s)1
o<<t O<a<t

where C(.) -- 0 as t --- 0. Since 19 is the free term of the Volterra equation (3.16), the solution

b(t) of this equation must satisfy the estimate

sup Ib(s)I __. C(t, AN,4,P,3) sup 12(s) - (s). (3.17)
o<3<t o<a<t

We can use this estimate to show in a manner similar to that leading to (3.10) that

ID(t; f1) - D(t; 12)1 C(t, 4, AN, 0)I11 - 1211 10,7 (3.18)

where C(t, 0, AN, 0) --+ 0 as t -+ 0.
Now for A1 and 12 in C+[0,T] we have

IT4111 - b[-I D(t; P2)[p(a, t; 11) -tP'(t)] - D(t; 1 )[p(a,t; 12 - P(t)]

ITb[l] Tb[f 2]I <12)

< Ip(a,t; 1) + P'(t)lID(t; 11) - D(t; 12)1 + D(t; II)Ib(t; fl, f2)1

D2(t;M)

< Ip(a, t; 0) + P'(t)llD(t; 11) - D(t; 12)1 + D(t; 0)Ib(t; fl, f2)1

D2(t; M)

Combining the above with the estimates (3.17) and (3.18), we obtain

sup ITb[I'] - Tb[f 2]I _ C1I11 - 1211[o,71
O<a<t

where C depends on the known functions AN, j0 and 4' and C -- 0 as t -+ 0. Thus for some fixed

r, depending only on the given data, there is an a < 1 such that

sup IT,[1]- T,[j 2]I _ 'af111 - 121110,71

As in the previous case, we may bootstrap this local fixed point to one obtained on the interval

[0, T]. This completes the proof of the theorem.

The above analysis shows that we have in fact proved the following
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Theorem 3. If assumptions Al and A2 hold, with P'(t) a positive, continuous function on [0, T]

and if there exists a solution f E C+[0,TI to (3.1), (3.2), (3.3b) and (3.4), then this solution can
be obtained as the limit of the sequence {f,},=o where f,, is defined by (3.8) with T = Tb for

io sufficiently close to I. Moreover there is at most one solution in C+ [0, T].

Let us now look at the analysis when the death function A has the form A(a, P) = AN(a) +
f (P~t)).-

In this case the mapping T in (3.5) takes the form

Till = p(O, t; f)- P'(t) - D(t; f) (3.19)
P(t)

where as before, D(t; f) is given by fo AN(a)p(a, t; 1)da, and p(a, t; f) represents the solution to

the direct problem (3.1) - (3.3), which can be written in the form

, ) = ( p(t - a, O)e- f: A(a)e- f_-. 1 ( .)da if a <t; (3.20)P(a, t; )=ft(.0

I. b(a - t)- f- A()de- Jot ()d if t < a.

With an analysis much like the previous case we can show that T[f] is a contraction on the

space C+[0,T], and that for fx and 12 in C+[0,T with 11 _ 11, p(a,t; 1) :_ p(a,t;f1) so that
D(t; Ii) < D(t; 11). For the case of boundary condition (3.3a) where p(0, t) is prescribed data

B(t), this shows that T is an isotone mapping on C+[0,T].
We assume that P(t) is a continuously differentiable, positive and strictly increasing function

on [0, T]. If, in addition, it satisfies

P(O)e- Mt + e-M(t'-)[B(r) - D(r; M)]dr < P(t) < P(O) + j[B(r) - D(r; 0)]dr (3.21)

for some M > 0, then it is easily shown that under condition (3.3a) T[O] 2_ 0 and T][M] S M,

with the consequence that T maps CM[O, T] into itself. These results can be summarized in

Theorem 4. Let A(a, P) = AN + f(P). If assumptions Al - A3 and (3.21) hold, then there

exists a unique solution f E CM to (3.1), (3.2), (3.3a) and (3.4). This solution can be obtained
as the limit of a monotonicaly increasing sequence {f)}=O where fn is defined by (3.19) with

p(O,t) = B(t) and fo = 0.

Theorem 5. Let A(a, P) = AN + f(P). If assumptions Al and A2 hold, with P'(t) a positive,
continuous function on [0, T] and if there exists a solution f E C+[0, T] to (3.1), (3.2), (3.3a) and
(3.4), then this solution is unique and can be obtained as the limit of the sequence {fj} =0 where
In is defined by (3.19) with p(0, t; f) = foL O(a)p(a,t;,f)da for Jo sufficiently close to f.

In the case of Theorem 4 where p(a, t; f) = B(t) is prescribed, the recovery of I is particularly

easy. It is straightforward to show that the equation T[f] = I is equivalent to a linear Volterra

integral equation of the second kind for the function exp(f; f(s)ds).
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If we do not make the compatibility assumption that f1 L 3(a)O(a)da = 0(Q) then we have to
modify our argument to include the possibility that p(a, t) might be discontinuous along the line
a = t. We should now write (3.4) in the form

P(t) = p(a, t) da + p(a, t) da

and when we differentiate this equation in t we obtain an additional term due to the jump discon-

tinuity. The new version of (3.5) becomes

=p(O, t; -)--P'(t) + [(0) 1 = T] (3.22)
foL AN(a)p(a,t; 1)da

where B(0) is data in the case of condition (3.3a) and equal to fL P(a)O(a)da in the case of (3.3b).
We can, as before, show that T is a contraction provided tB(0) - 4(O) is sufficiently small. With
condition (3.3a) T will still be an increasing map if B(0) < 0'(0) and Theorem 1 will go through
as before.
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1. Introduction

Consider a physical heat conduction process in a dynamical system Where we assume that
the heat flux across the boundary varies with the temperature but do not know the actual
law of heat exchange between the system and its surrounding. This situation could occur
when such exchange is a combination of both heat convection and radiation. It is therefore
of physical interest to be able to recover such a law of exchange, and this paper addresses
the question of whether the law can be uniquely determined by a measurement of the
temperature at a certain fixed point on the boundary. We show that this is the case, and
in addition prove that, in a sense to be defined, depends continuously on the values of the
temperature measurement.

The precise mathematical statement of this physical description is as follows:

Let T > 0 and QT = Q2 x (0,T], where Q2 is a bounded region in R' with a smooth
boundary S = 8Qt. Find a pair of functions u(x, t) and p(s) defined on Q'T and [A, B],
respectively, which satisfy the following equations:

ut - Au .f f(,t), in QT,(1)

O+ p(u) = g(x,t), on ST = Oft x (0, TI, (1.2)

u(x,O) =uo(x), on !a (1.3)

and the additional condition

u(xo, t) = h(t), t E [0, T].

where x0 is a fixed point of O91, N is the inner normal to 0 and A = minr Qu(Xt) and
B = maxQTu(z,t).

Recently, considerable attention has been paid to the recovery of one or more coefficients
for a parabolic initial-boundary problem from over-specified conditions, see [1, 3, 7, 101 for
example. Several authors have considered inverse parabolic problems in which an unknown
coefficient appears on the boundary. One model makes the assumption that the heat flux
across the boundary is a linear function of the temperature, that is the relation

au(0,t) + h(t)u(O, t) = g(t), t E [0, T],
Ox

holds, but where h(t) is unkown. T. Suzuki, [13, 14] proved that one can uniquely determine
the function h(t) from spectral data using the method of Gel'fand-Levitan. For additional
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work in this direction see [9], [11]. For the semilinear problem (1.1) - (1.3), Scheglov, [12],
used integral estimates to prove uniqueness of the solution in the class of piecewise analytic

functions. More recently, Pilant and Rundell, [10] studied the problem (1.1)-(1.4) in one

space dimension and established a local existence and uniqueness result using the contract

mapping principle.

Many of the uniqueness results obtained for inverse problems for semilinear parabolic equa-

tions rely on the monotonicity of the solution in the time variable. Not only does this

restri.-t the class of problems considered, but uniqueness results are obtained only within

a restricted class (essentially analytic functions) of coefficients. Such was the case for the

recovery of unknown, temperature dependent conductivities or forcing functions from over-

specified boundary data in [41, [7), [8]. The aim of this paper is to show the uniqueness and
the continuous dependence of the classical solution for (1.1)-(1.4) without making aproiri

assumptions on the monotonicity of u. Our technique has the additional advantage of
showing uniqueness in what is essentially the largest class of coefficients for which a strong

solution of the direct problem exists. The proof is based on singularity estimates for the

fundamental solution of the heat equation and an application of the generalized Bellman-

Gronwall inequality.

2. Notation and Statement of Main Results

We follow the notation of [5] for the spaces and their norms. By a solution to the problem

(1.1)-(1.4) we mean,

Definition: A pair of functions u(z, t) and p(s) defined on Q2 T and [A, B], respectively,

is called a classical solution of the problem (1.1)-(1.4), if

(1) u(z,t) E C3 i (QT) and p(j) E C[A,B];

(2) the inequality h(0) !5 u(x,t) < h(t) for x E S and t E [0, T] holds;

(3) the equations (1.1)-(1.4) are satisfied in the classical sense, where A = minQTu(z, t),

and B = minQu(x,t).

Remark: As was pointed out in [10], one can not in general expect that a solution of

problem (1.1)-(1.4) has the property (2), and it is difficult to give conditions on the data to

guarantee this inequality since u(z, t) depends on the unknown function p(s). In addition,

if p > 0, the physical interpretation is that heat is being pumped into the region through

the boundary and if p(u) is not uniformly Lipschitz then the temperature may "blow up"

in finite time. In this case we could not expect to solve even the direct problem for all
values of T.

We assume the following basic regularity assumptions hold throughout this paper:
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R: The functions g(x,t) E C 2'2 (ST) and h(t) E C2[0,T]. Moreover, the function h(t)

is montonic increasing on [0, T].

Our main result is:

Theorem. Assume the condition R is satisfied. Let (u(z,t),p(s)) and (i(x,t),As)) be

two solutions of the problem (1.1)-(1.3) satisfying the overposed conditions

u(xo, t) = h(t), 0 < t < T (2.1)

and

ii(x0, t) = h(t) 0 < t < T, (2.2)

respectively. Let H(s) and H(s) denote the inverse functions of h(t) and h(t). Then

sup Ip(s) - p(s) :5 C sup IH(s) - /i(s)I,

A<s<B As<B

where C is a constant dependent upon u(x, t), ii(x, t) and the known data.

This shows the continuous dependence of the function p(s) on the overposed data h(t) int
supremum norm. From this result we immediately obtain uniqueness of the solution of the

inverse problem

Corollary. Under the assumption R, the problem (1.1)-(1.4) can possess at most one
solution.

3. Proof of the Theorem

We will need two results which we state as lemmas. The proof of the first is based on an

iteration argument and can be found in [6]. The verification of the second lemma, which
appears in [5], consists of a straightforward calculation.

Lemma 3.1. Let f(t) be a nonnegative non-decreasing function on [0,T and let k E
(0,1). If

Y(t) <5 f (t) + t- Yr)k dr,

then for some constant C = C(k,T),

y(t) < Cf(t),
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Lemma 3.2. Let O < a, b < n- 1, then

Is dy <{ CIX - n - I- a- b, if a + b > n -1;

s I - YIGIY - - C ifa+b< n-1.

Let (u(x,t),p(s)) and (iI(z,t),p(s)) be two solutions of the problem (1.1)-(1.3) with the
overposed data (2.1) and (2.2), respectively, and let W(x, t) = u(x, t) - fi(x, t) for (x, t) E

QT. Then W(x, t) must satisfy the equations:

Wt - AW = 0, in Qr, (3.1)
OWOW on ST (3.2)

W(x, 0) = 0, El] (3.3)

Proof of Theorem: From the conditions (1.2) and (2.1), we have

OU(Xo t)uxo)+p(h(t)) =g(xo,t), 0<:t<T,
ONo

and it follows by assumption R that

au(zo, H(s))
p(s) = g(xo, H(s)) - ONo A < s < B, (3.4)

where H(s) = h-(s) is the inverse function of h(t). Similarly, we have

p(s) = g(Xo, A (s)) - 0(' , A < s < B, (3.5)

where fr(s) = h-I(s) is the inverse of h(t). Applying the mean value theorem, we find

p(u(x, t)) - p(i(x, t)) = (g(xo, H(u(z, t)) - g(zo, fl(&(z, t))]

Ou(xo, H(u(x,t))) oi(o, f(ii(x,t)))
ONo ONo

= OW(xo, H(fi(x, t)))
= (, t)w(zt) - ONO

+ -(x, t)[H(ii) - ft(fi)] (3.6)

where
O(x,t) = [(X0,0(x,0)- 2u(X'o 02(X, t)) ] H'(03 (X, t)), (X, 0 E ST,

atO No

U O (xO, (x, t))
-Y (Xt=t- OtONo , (x, t) E ST
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while 01(x,t) and 02 (z,t) are between H(u(z,t)) and H(i!(x,t)), 03(x,t) is between
u(x,t) and fi(z,t) and 04(z,t) and Os(x,t) and between H(fi(z,t)) and A (f&(z,t)).

It is dear by its definition that P(x, t) is continuous on ST. We now substitute p(u) - PO)
in equation (3.2) by its expression in (3.6) and employ the representation of the solution
for a second kind boundary value problem, (see [5]). This gives

W(x, t) = r(, t; , r)W(E, r) dS~dr, (x, t) E QT, (3.7)

where the function r(z, t; , r) is the fundamental solutioa of the heat equation (3.1), and
the function W(x, t) is the solution of the integral equation

W(x, t) = 2F(x,t) + j "-'t r + o(,t)r(x,t; ,r)]p( ,r)dSfdr (3.8)

for (x, t) E ST and where

F~~)=OW(xo,H(iifz, t))
ON + 7(x,t)[H(fi(x,t)) -fl(ii(x,t))], (z,t) E ST.

It is well-known, (51, that

[r(,t; ,r)j< it5 r , n-[, 2 , , E 0, 0:5r < t < T, (3.9)

where 1A is an arbitrary number in the interval (0, 1). Moreover, since S, as well as the

coefficients of the equation (2.1), are smooth, we apply the estimate (2.12) of Chapter 5 in
[51 with 3 = 1 to find that

or(z, t; , r) C
N(z,t) It - r[" Ix 1"-M' t> r, (3.10)

where p is an abitrary value in the interval (1, 1).

If we restrict ji in the interval (1, 1), and use the estimates (3.9) and (3.10) in (3.8), we
obtain

I W(x, t) 1 21F(x, t)I + 2C Jt -1 Is_z t-I dSfdr
< ~10 2fsz it +p IX -0 I1 n-,,u{o

21 F ,t 2 (It'-- ' _ r (Xt) E ST - (3.11)

where we have used Lemma 3.2 to obtain the final inequality.
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Let F*(t) - supO<t:< IIF( '0)IIL(S)" Then using (3.9), for t E [0,71

IIV( -,'t)lL-(s) <_ 211F(.-,t)llL.(s) + C I )IIL (S)

o It -(,r rIJAS

< 2F*(t) + C II( '-F)ItL(s) dr,

and an application of Lemma 3.1 gives

IIk(',t)lItL-(s) < CF(t), t E [0,71. (3.12)

If we now differentiate (3.7) in the direction No and evaluate at xo, we obtain

OW (xo,t) = fsOr(xo,t;t,0 T
ONo lo ONo rp(F'r)dS~dt, t E [0,T]. (3.13)

From the assumptions on a solution, one has

h(O) < ii(z, t) <_ h(t), z E S, t E [0.T].

and thus

0 < H(fi(x, t)) _ t, t E [0,T], z E OIl

Consequently, _____________OW(zo, r)
sup OW(zoH(i(xr)) < : sup I O(o )supI Oo_ o< ONt

o<r<t o rt

Let us define

S(t) = sup I OW(o,r) t E [0, 7.
O<r<t ONo

Now for t E [0, T],

F-(t) sup IIF( ',r)IIL(S)
O<r<t

< sup 1OW(Xo,H(.,r)) fL-(S)-o<r<t ONo

+ sup 117(.,,){H(t(.,,))-/f(i(',r))}llL.S)
O<r<t

< sup 11 OW(xo, r) liLa(S)+C sup
Ort ON r<t

=S(t)+C sup IIH(a(.,r))- (i(.,r))IILa(S) (3.14)
O<r<t
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and we can use the estimates (3.10), (3.12) and (3.14) to obtain

S(t)< sup Irs r, )o5<<t fo f N0 ),

_5 sup f fII1('-, r)llL-(s)lIZo- n1-21id"  d
O<r<t JO Js

_ c sup [" I1('. r)lL( ) dr0<<r .,o 1r - r d

<c sup {S(,r)+C sup IIH((',))-H((,))IILooS)Ir-'l"dT

:5 C sup) +I-S II(r -r) -j- fl(i.,r)Ie(s]
o<r<t 0o<f<l-

, sup -- Ir-rI"_C [{S(t)+ sup IIH (s( ( , I)r <, <_,Ioe

Ct1  " {S(t)+ sup IIH((.,r))- l(i(.,))IIL(s)}

<r<t

If we restrict T by the condition 0 < T < To = , we have

S(t) :_ C sup IIH(fi( .,r)) - ft(ii( .,))II L(S), t E [O, To].
O<r<t

We can repeat the above procedure and obtain the estimate (3.15) for all To < T provided

that the direct problem has a solution over this range.

From (3.4) and (3.5) one has

jp(s) - p(s) = Ia(s)[H(q) - R(s)] - OW(ZO, A(S))

aNo
C I H(s) - A (s)I + C s(A(s)), (3.16)

where
0 2 )(xo, a2(,))a(s) =gt(zo.oi(s)) - N t

ONoOt

while a,(a) and a2(5) are the respective mean values of the functions g(xo, t) and axo

between H(s) and H(s). Noting that A < fi(x,t) < B, we have from (3.15) that

S(H(s)) _< C sup IIH(i(',r)) - A(ii(,r))IIL,.(S)
O<r<R(8)

<C sup IH(s) - ft(s)I.
A<s<B
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Finally, we apply the above estimate to the inequality (3.16) and obtain

sup Ip(a) - P(s)I C sup JH(s) - A(s)i
O<a<B A<s<B

to complete the proof of the theorem.
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CHAPTER 11

Undetermined Coefficient Problems for
Quasilinear Parabolic Equations*

Michael S. Pilantt
William Rundellt

1. Introduction

We consider the problem of recovering an unknown coefficient (or coefficients) from a
parabolic initial boundary value problem of the form

u, = L(u] in 0 x (0,T] (1.1)

u(X,O) = Uo(X) on f (1.2)

Gfu] = 0 on 8n x [0, T] (1.3)

subject to additional information
B[u] = 0. (1.4)

The domain fl is an open, simply connected region in R1 - although in this talk, for
simplicity, we primarily consider Q = (0, 1), and n = 1. The overposed data will usually
be in the form of additional boundary measurements. The unknown coefficients may be
present in L or G (or both), and we assume the unknown coefficients are functions of the
single dependent variable u. Cases where the unknown coefficients depend only on x or t
have been extensively studied and will only be mentioned briefly. Reference (7] contains a
summary of many of these results and, in addition, has an extensive bibliography of over
1000 articles pertaining to the one-dimensional heat equation. Several recovery methods are
considered, and the relationship between the methods is explored. Various issues arising in
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discretization, numerical solution, and treatment of noisy data are also discussed. Finally,
a class of fixed point schemes based on residual updating are reviewed.

The main goal of this talk is a brief introduction to some of the methods used for
nonlinear coefficient recovery, and an examination of their interrelationships. A survey of
some of the literature in this subject is included in the bibliography.

The outline of this talk is as follows:

1. Introduction
2. Background
3. Model Equations and Inverse Problems
4. Meta-Theorem
5. Overposed Data
6. Existence, Uniqueness, and Monotonicity Results
7. Numerical vs. Analytic Methods
8. Discrete vs. Continuous Methods
9. Multiple Unknown Coefficients, Problems with High Dimension

10. Further Questions and Open Problems
11. Summary

2. Background

In order to motivate the discussion of this particular class of inverse problems, we begin
with some examples of models and applications which have appeared in the literature.

Physical Models: Classical examples of the equations we consider are

Heat Conduction:
ut - V.(DVu) = f

Chemical Kinetics:
ut - Du.- = fi(u, v)

vt - D 2 v. = f 2 (u,v)

Population Dynamics:
dP
dt

op
or, j- - DP. = f(P)

where D is a diffusion coefficient and f is a source term. (In all the above cases, standard
initial conditions and boundary conditions are imposed). The models may be in the form
of ordinary or partial differential equations, single equations or systems, and possess one or
more spatial dimensions.

The physical models are initially black boxes, in the sense that the details of the un-
derlying process are imperfectly understood:

initial + Physical interior +
boundary - p e - boundary
conditions information.



CHAPTER 1

Undetermined Coefficient Problems for
Quasilinear Parabolic Equations*

Michael S. Pilantt
William Rundellt

1. Introduction

We consider the problem of recovering an unknown coefficient (or coefficients) from a
parabolic initial boundary value problem of the form

Ut = L[u] in S1 x [0,T] (1.1)

u(z,0) = uo(x) on Q (1.2)
G[u] = 0 on 0f0 x [0, T] (1.3)

subject to additional information
B[u] = 0. (1.4)

The domain fl is an open, simply connected region in Rn - although in this talk, for
simplicity, we primarily consider 11 = (0, 1), and n = 1. The overposed data will usually
be in the form of additional boundary measurements. The unknown coefficients may be
present in L or G (or both), and we assume the unknown coefficients are functions of the
single dependent variable u. Cases where the unknown coefficients depend only on x or t
have been extensively studied and will only be mentioned briefly. Reference [7] contains a
summary of many of these results and, in addition, has an extensive bibliography of over
1000 articles pertaining to the one-dimensional heat equation. Several recovery methods are
considered, and the relationship between the methods is explored. Various issues arising ii
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discretization, numerical solution, and treatment of noisy data are also discussed. Finally,
a class of fixed point schemes based on residual updating axe reviewed.

The main goal of this talk is a brief introduction to some of the methods used for
nonlinear coefficient recovery, and an examination of their interrelationships. A survey of
some of the literature in this subject is included in the bibliography.

The outline of this talk is as follows:
1. Introduction
2. Background
3. Model Equations and Inverse Problems
4. Meta-Theorem
5. Overposed Data
6. Existence, Uniqueness, and Monotonicity Results
7. Numerical vs. Analytic Methods
8. Discrete vs. Continuous Methods
9. Multiple Unknown Coefficients, Problems with High Dimension

10. Further Questions and Open Problems
11. Summary

2. Background

In order to motivate the discussion of this particular class of inverse problems, we begin
with some examples of models and applications which have appeared in the literature.

Physical Models: Classical examples of the equations we consider are

Heat Conduction:
ut- -- " -f

Chemical Kinetics:
ut - Diu.. = fi(u, v)

r,. - D2 v. = f 2 (u, v)

Population Dynamics:
dP
dt

or, - - D P,_ = f(P)

Ct
where D is a diffusion coefficient and f is a source term. (In all the above cases, standard
initial conditions and boundary conditions are imposed). The models may be in the form
of ordinary or partial differential equations, single equations or systems, and possess one or
more spatial dimensions.

The physical models are initially black boxes, in the sense that the details of the un-
derlying process are imperfectly understood:

initial + Physical interior +
boundary proes -- boundary

conditions information.
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We may have some a priori information on the form of the mathematical model by imposing
conservation laws. For example, one often applies a conservation of energy balance in the

form

Change in Energy Lost Energy from= +
Total Energy Through Boundary Internal Sources

For a model of heat flow, if E denotes the specific energy, Q the heat flux, and y the heat
generated in the interior of the region 11, we have

0jE dV Q fQ .n ds+ JJdV V.Q dV+JJfdV.

Given sufficient regularity, this leads to

OE Ou

We denote by c = . the specific heat. If c, 7, and Q depend on the unknown u and,
in addition, Q depends monotonely on the gradient Vu, we have the quasilinear parabolic
equation

c(x, t, u)ut - V.Q(x, t, u, Vu) = Y(Xt, u).

Assuming a linear relationship between Q and Vu leads to Q = DVu and to the relation

c(x, t, u)ut - V.D(x, t, u)Vu = 7(X, t, u).

How good is this model? This depends on the physics included, the nature of the materials
involved, and a priori assumptions on the nature of physical laws.

The direct problem is to prescribe the coefficients {c, Q, 7}, impose appropriate initial
and boundary conditions (primary data), and use them to solve for the dependent variables.
The inverse problem is to recover one or more of the unknown coefficients as well as u by
prescribing additional data. If, for example, we wish to deduce the relationship of D to its
arguments, we must perform experiments. We know the input, and resulting output, and
want to find D. This is a classic example of an inverse problem.

In the general case, we may expect D to be a complicated function of x, t, u, and

Vu. Under special circumstances, it may have a simpler dependence. If the material is
very uniform, we do not expect material coefficients to depend on the spatial variable x.

If, in addition, the material properties do not change in time when the dependent variables
are held fixed, then we may expect that the coefficients do not depend strongly on t. In
such cases, a functional dependence on only the dependent variables, and perhaps their
gradients, is not an unreasonable assumption.

The case where the unknown coefficient D is a function of t only, has been investigated
in [3, 4, 7, 17, 23]. In some sense, this was a first approximation to the nonlinear coefficient
recovery case, in that the unknown coefficient may depend much more strongly on t than
on x. If u(x, t) is slowly varying spatially, then D(u(z, t)) - D(t).
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If the diffusion D is a function of x, we generally need interior measurements, or many
(probably infinite) boundary measurements. [The case of recovering the coefficient D(z)
in V.(D(x)Vu) = 0 is discussed in the papers by Isakov and by Sylvester and Uhlmann in
this proceedings]. If D is a function of u alone, one can show in some cases that a single
boundary measurement suffices [35]. The methods used in each of these problems are quite
different.

If we assume an a priori dependence D = D(t), D = D(x), or D = D(u), we can match
the model to data (output). What if we do not know the nature of dependence? For a first
approximation we might, perhaps, set

D(x, t, u) , DI(z) + D 2 (u) + D3(t)

to correspond to the first few terms in an expansion for D. If one term dominates the others,
we can recover the primary dependence, and possibly recover the other terms after fixing
the form of the main dependence. However, are we entirely sure that the model is correct?
In any mathematical model of a real physical process, terms invariably are neglected. The
accuracy of the simplified model can only be tested by experimentation or fitting to data.
In certain parameter regions, the simplified model may be adequate, but as the limits of
validity are reached, one must return to the underlying process and re-examine the model.

If large gradients are present, Q may depend on Vu in a nonlinear fashion and, there-
fore, D will depend on Vu. An even more complicated dependence may occur if the process
is not in equilibrium. As an example of this, consider the case where there is rate dependence
in the flux law; that is, where the flux Q does not instantaneously respond to the gradient
Vu. Thus, there is a characteristic relaxation time c. Assuming to a first approximation
that

E~tQ + Q = DoVu Do = constant, C << 1

we have the convolution

Q = Do exp( )(t-))VU(z'r)dr

= k * DoVu,

and

ut - k * V(DoVu) = 7,

which is an example of a heat equation with memory. Determining which of the many
types of nonlinear dependencies is present is precisely the modeling process. Determining
the form of the linear or nonlinear equations by actually matching the output of the model
to the observed data is the ultimate goal of solving the inverse problem.

Applications: In general, coefficients reflect scalings and parameters (e.g. amplitudes,
frequencies) of physical importance. One tries to set up experiments in which only one (or
possibly a few) parameters vary and then seeks to recover the form of the dependency of the
unknown coefficients by repeated observation. Unfortunately (at least from the perspective
of those who must solve them) most equations which describe physical laws are in fact
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nonlinear. The forms of nonlinearity may be difficult to determine. Consider the following
classical problem in population dynamics. A constant growth rate A for a species leads to
the growth law

du
dt u.

This is unrealistic in that it leads to purely exponential growth (or decay). A more reason-
able model is the logistic equation

du 
2

d= A(u - au2 )= (A - au)u

which leads to bounded growth. In reality, the population may have a more complicated

growth law of the form du
Tt= f(u).

If we could monitor the solution, u, of this ordinary differential equation over a time interval
t1 < t < t2 , we can recover f immediately. For example, if u(t) = h(t) on the interval
t1 < t < t2 , then by substitution into the differential equation we have h'(t) = f(h(t)).
This implies that f( ) = h'(h-1 ( )). This observation underlies much of the convergence
results in the parabolic case when the time dependence dominates spatial dependence near
the overposed boundary [32, 34], that is, when Iu.=(xo,t)I << Iut(xo, t)I.

Another natural application is control by means of boundary measurements. If the flux
on a particular boundary is under our control, and depends on the instantaneous value of
the dependent variable there, we then have a relationship of the form

Ou
= f(u).

Given a desired response at a point x0 on the boundary, u(xo, t) = h(t), we wish to find
the unknown control f which achieves this target state. We note that, in practice, inverse
problems and identifiability problems in control tend to be very closely related [39].

3. Model Equations and Inverse Problems

We will discuss various inverse problems and methods for the parabolic equation

ut = L(x, t; u) on 1 x [0, T]

G[u] = 0 on 1 x [0, T]

where the operator L and/or the boundary operator G contains an undetermined coefficient.

Classical examples of such problems are

C(U)ut = u". + Y(x, t) c _ CO > 0 unknown specific heat

ut = 9.(k(u),9u) + 7 (x, t) unknown conductivity

ut = uz_ + f(u) + -(X, t) unknown reaction term

-(0, t) = F(u(O, t)) unknown boundary condition
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These are canonical single coefficient inverse problems. The coefficients are functions from
RI to RI . In order to recover the functional dependency we should prescribe overposed data
with the correct dimensionality. The overposed data should map a subset of f? x [0, TI --+ RI .
These problems are in contrast to other inverse problems where the unknown coefficient
depends on z or t but not u:

ut = a(t)Au + 7(x, t)

Ut = V(a(x)Vu) + 7Y(X, t)

Ut = Au + f(x, t)

Ut = AU + p(x)u.

If x E f/ C R", these are problems where the unknown coefficient is a function of more than
one variable. Examples of such problems are given in [7].

4. A Meta-Theorem

Finding exactly the right space of overposed data is important in order to guarantee exis-
tence of a unique solution to the inverse problem. If too much data is overposed, there may
not be a solution to the inverse problem. If too little data is overposed, there may not be
a unique solution to the inverse problem. Constraints on parameters lead to compatibil-
ity conditions between the primary and overposed data, which can be quite complicated.
This has led to a dichotomy between existence results and uniqueness results. Consider the
problem of recovering a(x) in 0 0

Ut - ±(a(x)-) = 0
ax ax

with u(x, t) satisfying initial data, Neumann boundary conditions, and u(O, t) = h(t)
given as overposed data. Furthermore, suppose the a(z) is smooth enough so that Lu

(a(z) 8) = Au has a complete set of L2 eigenfunctions, satisfying

L4,(z) = sx)

j=00

Writing u(z, t) = EUj(t)46J(x), one can solve for the coefficients uj(t) and easily obtain
j=Oo

u(x,t) = ui(0)eAtt0j(X)
j=O

The ui(0) are determined by the initial data. Evaluating this expression on x = 0, we
obtain a Dirichlet series for h(t). This implies that any overposed data h(t) = u(O, t) for
reasonable a must be a (very small) subset of the class of analytic functions. This is a very
strong compatibility constraint. Under certain conditions, one obtains uniqueness easily,
but existence only if the overposed data is in an extremely small subclass of functions [301.

One could argue that the difficulty is that the overposed data is in the wrong direction.
We are trying to recover a function of x by giving data in the t direction. The following
meta-theorem was formulated in the late 1960's for parabolic inverse problems [6].
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META-THEOREM: The overposed data and the unknown function
should lie in the same direction.

If the data is in the "correct" direction, the problem will usually be well-posed. If data
is not in the "correct" direction, the problem will be ill-posed. For example, recovering a(z)
by overposing data on x = 0 leads to an extremely ill behaved problem, but recovering a(t)
by the same data is a relatively well-behaved problem [3, 4, 23, 24]. Overposing final data
u(x,T) leads to a much better behaved problem for coefficients which depend on x, [38].

5. Overposed Data

There are many possible measurements one can perform on an evolving process. In some
cases the experimenter can choose the form of the overposed (i.e., measured) data. This is
often in the form of local (pointwise) data. Two common examples are

i) Dirichlet type, u(xo, t) = h(t) 0 < t < T;

ii) Neumann type, Ou/Ox(xo,t) = h(t).

In some cases, one has only nonlocal observations - for example, measurements of
spectra, measurements on the total energy in the system, periodic data, or time-integrated
data. Examples of nonlocal data relevant to parabolic initial value problems are

au(, t) + 3u(1, t) = h(t),

j u(x, t)dx = h(t),

jo Iu(z, t)ldx = h(t),

o k(t - r)u(xo, r)dr = h(t).

For examples of some of these, see [2,7] and the references contained therein.

Overposed Dirichlet Data: The simplest type of overposed data is Dirichlet data. We
will consider overposed Dirichlet type at first, and return to the other types later.

As a special case of the inverse problem (1.1)-(1.4), we examine the initial boundary
value problem

Ut - = f(u) (5.1)

u,(O,t) = qo(t) u.(1,t) = .t (5.2)

U(=,O) Uo(X) (5.3)

with overposed data

u(O, t) = h(t). (5.4)

Other coefficient problems considered can be found in references given at the end of this
paper [5, 3 - 13, 31 - 36]. In general, u depends on f in a complicated way, and we must
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use the direct problem (5.1)-(5.3) to obtain u(x, t; f). Solving the inverse problem reduces
to solving the "residual equation"

R[f] = u(O, t; f) - h(t) = 0 (5.5)

for f, given h. In other words, the direct problem yields f '-* h, and we must invert this
to find h i-p f. The analysis of this mapping, which we call the "data-coefficient mapping"
is fundamental to the understanding of both the inverse problem and solution strategies.

Properties of the Dirichlet Data-Coefficient Mapping: For the inverse problem
(5.1)-(5.4), the basis of many of our residual algorithms is the Green's function representa-
tion

u(X, t) = ?k(z, t) + Jf K(z, y, t - r)f(u(y, r))dydr (5.6)

where tk satisfies (5.1)-(5.3) with f = 0; that is, 0(z, t) = u(x, t; 0). A necessary condition
for solving (5.5) is that . be nonsingular. Restricting (5.6) to the overposed boundary
x = z0 leads to

u(xo, t) = k(X0, t) + JJ K(zo, y, t - r)f(u(y, r))dydr. (5.7)

Equations (5.6) and (5.7) form a coupled set of first kind nonlinear Volterra integral equa-
tions. They contain all the information of (5.1)-(5.4), but are difficult to solve in this form.
Written in terms of partial differential equations (and evaluating on x = X0 = 0) we have

ut(0, t) - u.T(0, t; f) = f(u(O, t)) (5.8)

or since u(O, t) = h(t),
f(h(t)) = h'(t) - u..(O, t; f)

h'(t) - 0(, t) - J Kfg (O, y,t - r)f(u(y, r))dydr.

This amounts to converting (5.7) to an integral equation of second kind by differentiation.
One can show by Gronwall arguments that if f is Lipschitz, then f is a solution of the
inverse problem if and only if it is a solution of the above mapping [34].

Historical Methods for solving the "Residual Equation": The first two methods
for solving equations of the form (5.5) are special cases of parameter identification. In these
methods, we assume that f can be described by a finite set of parameters {c1, a 2 ,..., QN};

N
that is, f = f(a 1 , a 2,. .. , aN). An example of this would be f( ) = aio'( ) where the

-0j(x) are known basis functions. The first method we consider is

a) WEIGHTED LEAST SQUARES. Here the number of measurements (M) may exceed the
dimension of the parameter space (N), and consequently the model may be overdeter-
mined. For f's of the above form, we solve the problem

M M

min w, Rtt,]} = min{ wi Iu(xo, ti, f(a,)) - h(t,)
i--1 c i -1
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where the wi > 0 are weights. This presents a difficult optimization problem, since the
functional may have many local minima and be very flat in the neighborhood of the
minima. "Output least squares" methods sometimes have these types of difficulties.

b) COLLOCATION METHOD. This method fixes the basis functions and reduces the prob-
lem to a nonlinear algebraic system of equations.
We solve the equations R[f(aj)](t,) = u(0, ti,f(aj)) - h(ti) = 0 i = 1,..., N. This
is called a "collocation method," since we set the residual to zero at a finite set of
collocation points.

Residual Update Methods: We now discuss several mappings (Newton, Quasi-Newton,
Homotopy) which are related to one another. These methods depend on the GateAux
derivative of u, with respect to f. They rely on the fact that the Gateiux derivative
satisfies a linear partial differential equation. To see how the function u depends on the
coefficient f, we form the quantity u(x, t; f + so).

The function u(x, t; f + so) satisfies the following boundary value problem:

t UZ = f(u) + so(u) (5.9)

u'(0,t) = go(t), u.(1,t) = g1(t)

u(X, 0) = uo(x).

Defining the Gateiux derivative by f = U(X, t; f + so) Jf , it is easily seen that

fi satisfies the equation

fit - 71". = f'(u)-t + ¢(u) (5.10)

fi(0, t) = 0, fi(1,t) = 0 (5.11)

i(x, 0) = 0 (5.12)

where u = u(z, t; f). We assume sufficient smoothness so that the Gatelux derivative
is equivalent to the Frdchet derivative. Knowledge of the functions f and 0 determine
the partial differential equation, (5.8), and its solution, completely. In fact, we have the

representation formula

fi(x, t) = J k(x, y, t - r)¢(u(y, r))dydr

where k' is the Green's function for the operator Ot - - f'(u).

Based on the fact that the residual R[f] is the primary source of information about
model error, it is reasonable to believe most effective iterative recovery methods are equiv-
alent to some type of residual update scheme. For the problem (5.1)-(5.4), these schemes
are generally of the form

f(f+() - (,) + jr[R(... ;fin))]

f(n) + .F[u(0, t; f(n)) - h(t)]
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where F vanishes only at the origin. We have a solution (and convergence) if and only if
R =. 0. The iteration sequence is equivalent to finding a fixed point of the mapping

f = T[f] = [I+.FoRou o ]f

defining the iteration scheme

f(n) , U(rn) R(n) f le n:+1).

This is the function space analog of the "Matrix splitting methods" used in numerical linear
algebra. Convergence depends on the Frdchet differentiation of the map F. If the operator
I + . 0 is contractive, we may expect some type of convergence. F should be chosen,
in some sense, to guarantee the convergence of the iteration scheme (as a contraction). It is
precisely the choice of Y which distinguishes the various iteration schemes from one another.

As an example of this general method, we have the following schemes:

a) NEWTON-RAPHSON. In this method we seek to solve the nonlinear equation

R[fl = u(O, t; f) - h(t) = 0

by the iteration scheme

f(fl+l) =fn)_LR (fn)-Rfn]Of -/ " / " -(p7) (f(" ). ["

Letting J we have

fn+l - n - J[fn]-l.R[fn] = fn - J[f ]-'.(u(O, t; fn) - h(t)). (5.13)

Rearranging, this becomes

J[fn]. (fn+l - fn) = h(t) - u(0,t; fn).

We seek to recover fn+ from this equation. Letting f - J[f,,].(f,+l - fn), one can
show that fi satisfies

fit - fiXX = f (un)fi + fn+l(Un) - fn(un) (5.14)

fi (o't0 = 0, fi.(1,) 0 0 (5.15)

fi(X, O) = 0 (5.16)

and on the overposed boundary z = 0,

fi(0, t) = h(t) - u(O, t; fn). (5.17)

We therefore have

fi(0, t; f) = jj k(0, y,t - r) [fn+l (U,(y, r)) - fn (un(y, r))] dydr,
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where k is the Green's function for the operator 0 t -0. - f(u,,) I. This is a first-kind

Volterra integral equation, with convolution kernel.

We can also recover f,,+l by evaluating (5.14) on the overposed boundary x = 0, using

the boundary condition (5.17) to get

h'(t) - ut(O, t; f.) - ft2 (O, t; f(n+l)

= fn(u.(O, t))(h(t) - u.(O, t)) + f.+1(u.(O, t)) - f.(u,(O, t)). (5.18)

This is itself a nonlinear equation for f(n+'), and must be solved by iteration.

b) QUASI-NEWTON. In this method we replace J[f,]-' by a fixed operator K

f(_+) = f(-) - K .

A natural Quasi-Newton method may be defined by replacing f'(u,,) by fn(h) in (5.13).
This has the effect of changing the linear operator J, and modifying the update scheme.

Another possible scheme would be to keep J[f,] fixed for several iterations. The success

of these schemes is highly problem dependent. For an arbitrary choice of K, one can not

necessarily reduce this to a projection scheme for a local partial differential operator.

c) HOMOTOPY. In this method we have

f(s+AS) = p) + 'O f-

where h(') parameterizes the overposed data and h(1 ) is the actual observed data.

This method can be thought of as a continuation scheme. An initial guess fo is selected

and the direct problem solved to recover the corresponding boundary values ho(t) E
u(O, t; fo). We let hi(t) = h(t), the actual overposed data, and form the paxameterized
values h.(t) = (1 - s)ho(t) + shi(t), moving from the initial state to the desired state

as s moves from 0 to 1. We wish to find the corresponding reaction terms f.(t),

that accomplish this. The function fl corresponds to the overposed data h, = h and

therefore is the homotopy solution of our problem. At each value of the parameter we

linearize the problem about the function f, and move in the direction dictated by the
overposed data. This corresponds to implementing the scheme

J[f,].(f,+Aa - f.) = h.+&. - h.

which can be written symbolically as

Ou
Of .a A = Ah

and is therefore equivalent to Euler's method in parameter space s E [0, 1].

In a similar manner to Newton's method, we can obtain a partial differential equation
for the updates fi. The result is

fit - fs..(0, t; f(s)) - fg(u.)fi + f-+,&-(u-) - fM(u.) (5.19)
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f =(0, 0 = 0, fi.(1, t) = 0 (5.20)

i(X,o) = 0 (5.21)

and
fi(0,t) = h,+,(t) - h,(t). (5.22)

Using the representation

fA(0, t; f) = j k(0,y,t - r)[fo+Ao(U(y,r)) - f.(u.)(y,r))] dydr

we again obtain a first kind Volterra equation for f.+A, of convolution type, where
K is the Green's function for the operator Ot - - f,(u) I. Using the additional
boundary data, we can obtain an update scheme for fs+,a

h'o+,,(t) - h(t) - &..(o, t;f.+,, =

f (u.(O, t))(h.+A.(t) - ho(t)) + fo+Aa(u.(O, t)) - f.(u.(O, t)) (5.23)

The common theme for the previous three methods is the fact that each of the update
schemes computes an update f(n) by means of the solution to a linearized partial differential
equation. By projecting this onto the overposed boundary one can recover the update
function from (5.18) or (5.23).

Non-Residual Schemes: We now approach the inverse problem (5.1)-(5.4) by a different
method. Solving (5.8) for f in terms of h, we obtain

f(s) = h'(h-(s)) - u,,(O, h-'(s)). (5.24)

If we eliminate f from (5.1), using (5.24), we obtain the Trace Type Functional (or TTF)
equation

ut(x,t) - u,,(z,t) = h'(h-1 (u(z,t))) - u,,(O,h-'(u(x,t))) (5.25)

In order for this equation to be well defined, the overposed data must satisfy the constraint
0 < h- 1 (u(x, t)) :_ t. The direct problem - that is, (5.25) along with the primary data - is
to be solved for u(z, t), with f recovered by (5.24).

The difficulty with this method is the form of the nonlinearity. Some results have been
obtained for the time dependent coefficient case by finite differencing the nonlocal u.- term
[131. Recent results for the TTF method are contained in [12, 14-16]. [For a more thorough
survey of the TTF method and its application to various inverse problems, see the paper
by Cannon and DuChateau in this Proceedings.]

If we eliminate u from (5.8) by using the representation formula

u(X, t) = *(Xt) + Jf K(x,, y, t - r)f(u(y, r))dydr

we obtain the Fixed Point Projection (or FPP) method

f(h(t)) = h(t) - Ot(O, t) -/J K.(O, y, t - r)f(u(y, r))dydr. (5.26)



UNDETERMINED COEFFICIENT PROBLEMS 13

Ve remark that there are some deep underlying connections between the FPP, TTF,
and collocation methods. We actually solve the FPP equation by the equivalent iterative
method in which we update f by

n+ 1)(h(t)) = h'(t) - u(n)(0, t) = h'(t)- u=(0,t; f")),

and update u by solving the nonlinear partial differential equation
(n+1) _ (n+1) =f n+l)(U(n+1)).

Ut 1)- (nl

Eliminating f(n+l) from the above two equations, we see this is equivalent to the iteration
scheme (n+1) _ U(n+1) =,((n(+l)(X, t))) _- u(n)(0, h-'(U(.+,)(X, t))) (.T

which corresponds to a semi-implicit numerical strategy for the TTF equation (5.25). Equa-
tion (5.27) is implicit in u and explicit in u.,, and is solved in time by a Crank-Nicholson
or Tri-level scheme [31, 32, 34]. A fully explicit solution of (5.25) would correspond to the
equation

U 1
- = h'(l(uhn)(x,t))) - h (5.28)

A fully implicit solution of the TTF equation would correspond to the equation

Ut -.+ = (u(n+')(x, t))) (0, h-(,(n+')(z, t))) (5.29)

which corresponds in turn to the coupled scheme
(n+1) _ u(+ 1) = f(n+l)(u(n+l))

n+1) (h(t)) = h'(t) - u(n+1)(Ot),

and is iterated back and forth at each time step. Suppose we have solved the TTF equation
by this method for 0 < t < t,. Because of the monotonicity of the data and the range
condition, it can be seen that the f(n+1) are changed only on the interval [h(tj), h(t3 +1 )].
Having determined the f over some range, it is forever fixed. This may also be interpreted
as solving the nonlinear Volterra integral equation (5.26) for t > tj:

f(h(t)) = h'(t) - 0,(0, t) - jjK (0, y, ti+l - r)f(u(y, r))dydr (5.30)

- i: i K.(O, y, tj+l - r)f(u(y, r))dydr

which requires inverting the kernel Kr.(O, y, t) for small t. The first three terms are known,
since u(z, t) E [h(t 0 ), h(tj)] for 0 < t < tj by the range condition.

If we collocate on h'(t) - that is, we choose an f satisfying ut(O, tj, f) = h'(ti) - we
have

=(( )- h'(t1 ) - ¢,(0, t.) - j jK (0,y,t3 - r)f(i(y,T))dydr.
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This is equivalent to solving (5.30) by a piecewise linear function f if we also collocate on
h(t) (setting i(0, tj) = h(tj)) and choose the collocation points to correspond to the actual
time steps. Collocating only on h'(t) leads to small differences between the methods, as
long as a piecewise linear f = I is used to solve (5.30). If there is a monotone relationship
between the overposed data and the unknown coefficient, collocation methods can be used
to solve the TTF equation. On the other hand, implementing the FPP method corresponds

to a particular numerical strategy for solving the TTF equation.

Other Types of Overposed Data: In one dimension, it is often possible to switch the
roles of overposed and primary data. (This amounts to showing that the overposed data is
admissible as primary data). In higher dimensions, this strategy may not work. Consider
the inverse problem

ut - ,u = f(u) in 9 x [O,T] (5.31)

u=h ona9Qx[0,t] (5.32)

with the overposed Neumann data

Oab(x0, t) = go(t). (5.33)

The overposed data lie on a curve of dimension one. Using the representation theorem

u(X, t) = Vk(x, t) + JJ K(x, y, t - -r)f(u(y, r))dydr

we immediately obtain the "residual equation"

ou oa(xo, t) ff oK(xo, y,t -
g0(t)= W (z, t) = + " )f(u(y,r)dydr

which is a Neumann data-coefficient map. This is a first-kind nonlinear integral equation

for f(u). It is not clear how to convert it to second kind by any simple means. By analogy
to the Jacobi iteration method, one possibility is to subtract off the diagonal terms to obtain

the second-kind equation

ot k(t - r)f(h(t))dr =

Oik f/fO
= - g(t) + -- v(f(h(t)) - f(u(y, r))dydr.

where k(t) = f K(xo, y, t)dy. In general this leads to inversion of integral equations with
fractional order kernels, whose inverses are not local differential operators.

Another phenomenon manifests itself with nonlocal overposed data. Consider (5.1)-
(5.3) with overposed data of the form

E(t) = 10 u(x, t)dx.
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Integrating (5.1) over [0, 1], we immediately obtain

E'(t) = g1 (t) - go(t) - j f(u(y, t)dy. (5.34)

This is a first-kind nonlinear Fredholm integral equation, with a smooth kernel (K = 1).
This is not a pleasant situation; however, one can easily show that f, > f2 =o u1 > u2 =:

El > E 2 , that is, E is a monotone function of f. This will therefore yield a unique piecewise
linear function 1, by the collocation method, satisfying E(tj) = f f(u(z, tj)dx.

In both of these cases, it is not immediately clear how to implement either the TTF or
FPP methods.

6. Existence, Uniqueness, Regularity

Monotonicity Methods: If u i9 a monotone increasing function of the unknown co-
efficient f, then u(x0 , t; fl) > u(zo, t; f2) if f, > f2. As a result, collocation methods are
readily available. If t'-, initial value fo is known (usually from consistency arguments), then
on the first interval u0 < u < ul we have f(u) ;: fo + Mo(u - uo), where M is the slope to
be determined by matching u(0, t1 ; f) = h(t). Because of the monotonicity, one can easily
show that there is at most one value of M0 which satisfies this equation. In order for this
to work we must have the range condition u(x,t) E {u(0,t)} = {h(t)}. We may compute

the successive values of Mi by this process, as long as the overposed data h(t) is monotone.
Monotonicity methods have been applied to inverse coefficient problems in [18].

Uniqueness: Uniqueness of undetermined analytic coefficients has been shown in a
wide variety of instances. These rely on the property that any analytic function with an
infinite set of zeros on a finite interval has an accumulation point and therefore must vanish
identically. In one instance, this follows from the result that the difference between two
solutions of the inverse problem must vanish infinitely often on an arbitrarily small interval
if they agree at the left endpoint, [19]. Uniqueness results have also been obtained by
utilizing contraction mapping arguments [31-36], and monotonicity [18].

Energy estimates on the difference of two solutions have been obtained by [14, 27 - 29].
These lead to uniqueness and stability (identifiability) results in various cases.

Existence: Existence questions are still a major source of difficulty. In fact, existence
may not be the appropriate question. Existence requires that the overposed data lie in the
range of the nonlinear map f - u(xo, t; f) = h. This consequently requires that the model
(and hence the mapping) be known exactly, and that the data h(t) be known exactly for a
continuum of values 0 < t < T.

The fixed point methods that we use (based on the FPP algorithm) do not yield
existence at the present time because we assume the existence of a solution to the inverse
problem, and show that with sufficient smoothness, it is a regular attractor. We then use the
contraction properties of the mapping to show uniqueness [31-36]. Although under certain
assumptions f E Lip, yields h' E Lip1 , the range of the nonlinear map may not in fact be
onto a ball in Lip1 . If it is not onto, then we may expect that further constraints on the
overposed data are necessary. Because of the discrete nature of overposed data, numerical
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errors associated with actual implementations, and noise in the data, determining whether
the overposed data actually arises from a function in the admissible class is less important
than whether the overposed data can be approximated in the limit (in some norm) by
a sequence of approximations (which are themselves admissible). The robustness of the
algorithm (that is, the sensitivity of the algorithm to noisy data) can therefore be checked
by perturbing the primary and overposed data.

7. Numerical vs. Analytic Methods

Because of the intrinsic nonlinearity of the direct problems, one must get very precise
estimates on the forward map f --* u[x, t; f], [20,26]. The whole arsenal of nonlinear partial
differential equation methods, boundary estimates, and singular integral equation theory
must be used. Because of this complexity, numerical simulations are -ery useful. Reducing
problems to finite dimension is not without its drawbacks, but "real" data is always discrete
anyway.

Inverse methods based on modifications oi the FPP method usually have little overhead
in update strategy with respect to direct solver. This results from the fact that each iteration
of the FPP method is equivalent to one direct solve, and the FPP method is observed to
converge in a very small number of iterations (typically less than five). The update consists
of differentiating the numerical solution near the boundary, and smoothing the result with
a smoothing spline. This costs very little, compared to the cost of obtaining the numerical
solution (via a direct solve). This implies that speed of convergence and stability are more
important than cost of update strategy (at least for evolution equations). To summarize,
we observe that:

RULE OF THUMB: Good, efficient, accurate direct solvers are essential
before one tackles inverse problems numerically.

8. Discrete vs. Continuous Methods

Once one has discretized the inverse problem (with finite difference or finite element meth-
ods), smoothness is no longer really the issue. All functions in this setting are piecewise
linear, or piecewise polynomials of low order. We must approximate the "exact" data by
discrete data, therefore introducing errors into the overposed data. Noise and model error
add to the difficulties. It is important to check the "robustness" of the inverse method.
Numerically, methods may be very stable, in spite of the lack of an existence or uniqueness
theorem. In fact:

RULE OF THUMB: Good, stable numerical results usually indicate the
existence of a mathematical theorem!

The role of "numerical experimentation" has proven to be a valuable tool for testing
hypotheses and conjectures. The "best" space for the posing of the discrete problem is
not always clear from the problem itself, but it can be crucial to the performance of the
numerical algorithm. For example if one applies the collocation method to (5.1)-(5.4), and
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uses only the overposed data to collocate, i.e. u(O, ti; f) = h(ti), very poor results are
obtained. It is much better to minimize Iu(0, ti; f) - h(ti)l + Aut(0, ti; f) - h'(ti)l or even
to collocate on h'(t), that is set ut(O, ti; f) = h'(ti). This results from the fact that the
mapping from h - f is not bounded but h' - I is.

Regularizations: Often, one must perform certain "regularizations" of the algorithms in
order to maintain stability. For example,

a) A priori bounds (e.g., on the specific heat, cl > c > co) may have to be imposed by
truncating the iterates. If the iterations settle down so that truncation is unnecessary,
then truncation appears only as part of the "startup" cost for the algorithm (that is,

in obtaining a sufficiently good initial guess).

b) The derivatives of the discrete data will usually have to be smoothed and interpolated
(e.g., by a smoothing spline). Again, if the iterates become smooth enough so that this
is unnecessary in the limit, it becomes part of the startup cost.

c) Nonuniform weighting of the residuals may be imposed. Initial errors may be larger
than errors at a later time. Requirements on smaller time steps or more closely spaced
overposed data are typical startup costs.

There are numerous ways to "regularize" inverse problems. If the regularizations disap-
pear in the limit, they are fairly harmless. If they persist, then one is solving a "perturbed

problem."

9. Multiple Unknowns

Many of the methods discussed in this survey can be extended to multiple coefficient in-
verse problems. An example of a multiple coefficient problem is the recovery of the solution

triple, ( u, c, f ), in c(u)ut - Au = f(u) from (additional) overposed data. Another situa-
tion occurs in the equation ut - Au = f, when the forcing function f might be known to
be a function of both u and Vu. The projection methods are not able to handle the true
multivariable case directly, but some further restrictions on the nature of the multivariable
dependence allow the projection methods to be applied. One method, which may be fea-
sible under a wide variety of circumstances, is to assume that the forcing function can be
approximated by the two-term Taylor series f(u, Vu) - f( 0 )(u) + f(u).Vu. The problem
can then be treated as an attempt to recover the set of functions (u, f(0), f).

One can visualize problems of the form

c(u)ut - V.(k(u)Vu) = f(u) +

ou5-'= g(u)

u(X, 0) = u0(X)

with n > 1 unknowns. For a single dependent variable, we have essentially one observation
point where Range {u} E {u(xo,t)}. In order to distinguish between coefficients we need
multiple runs in general (choose different -y's or uo(x)'s). There is much more opportunity
for degeneracy, however. If the data is very flat ie JV 2uI J 0 then c(u)ut --, f(u) and we get
h'(t) - f(h)/c(h) and only (f/c) is determined, unless 0 $ 0. We obtain conditions on the
Jacobian of the matrix which are more difficult to enforce or verify.
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Recovering (it, f) from the system of equations

is one of the best type of multiple unknown problems, since the matrix multiplying the
unknowns J* is diagonal. Issues in multi-coefficient problems are still poorly understood,
although some work has been done [31].

10. Further Questions and Open Problems

There are many function-analytic methods for solving the nonlinear equations of the form

R[u[...; fi] = 0

in various kinds of spaces. Some of these, as we have shown, can be recast as iterated
solutions of various perturbed equations and therefore lend themselves to schemes like the
fixed point projection methods. Others are more direct attacks using the integral repre-
sentations for the solution, or rely on properties of the data-coefficient mapping such as
monotonicity. Still others, based on the TTF method, rely on existence theory for abstract
Cauchy problems. Classifying the various methods in a more unified framework is yet to be
done. Classifying ill-posed problems as to the degree of ill-posedness has been an ongoing
research topic for many years [see the talk by Seidman in this Proceedings].

If the unknown coefficient involves the gradients of the dependent variables, much less
is known. The update schemes are less stable, and more prone to error, particular in the
discrete case. Numerical differentiation of data is always tricky. When the overposed data
involves gradients in higher dimensions, or is nonlocal, it is not immediately clear how to
apply either the FPP, collocation, or TTF method.

11. Summary

We have observed that for many inverse coefficient problems in parabolic equations, recov-
ery methods generally fall into two categories - residual update and non-residual update
strategies. The residual update strategies we have examined are the FPP, Newton, Quasi-
Newton, and Homotopy methods. The convergence of these methods relies on the Fr6chet
derivative of the Data-Coefficient mapping. The non residual schemes considered were least
squares, collocation, and the TTF method. These last two were shown to be closely re-
lated to the FPP method when actually implemented numerically. The TTF method is
formulated in the terminology of an abstract Cauchy problem, while the FPP method is
formulated in terms of a fixed point mapping.

The question of classifying inverse problems as to the degree of il-posedness is at
least subjectively possible, through the existence of a Meta-Theorem, examination of the
regularity of the data-coefficient mapping, and existence and uniqueness results for abstract
Cauchy problems of TTF form.

Existence of solutions to the inverse problems is a difficult issue, and is closely tied to the
issue of compatibility of overposed data with the actual model considered. Of more practical
importance is constructibility, stability, and uniqueness for solutions, given a definite form
for the model. When the model itself is in question, existence is replaced by constructibility
of approximations in Hadamard's triumvirate, which historically has defined well-posedness.
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Introduction.

Consider the initial-boundary value problems on [0, 1] x [0, T],

ut - uzX -- t(x, t) u - uzz --= 'T(x, t) + fAU)

u(X, 0) = uo(X) u(X,0) =o()
uZ(0,t) = (u(0,t)) u,(0,t) =go(u(0,t))

u,(1, t) =-f (u(1, t)) u,(l, t) =9 -g(u(1, t))

The functions u0 , -y, g, and g2 are assumed known. Given sufficient smoothness

on and knowledge of the function f(u), the above direct problems have a unique

solution for u(x,t). However, we envision the situation where the function f is

unknown, save that it depends only on u, and wish to determine both u(x, t) and

f(u) by making additional boundary measurements. We shall denote by u(x, t; f)

the solution of the direct problem for a given function f. For further discussion of
the direct problem and the modeling of such boundary conditions see the monograph

[l].

Equations (B) describe, for example, the diffusion of heat in a uniaxial bar with

nonlinear boundary conditions at the ends. Equations (I) describe, for example,
the diffusion of heat in a uniaxial bar with nonlinear source terms. Our prob-

lem is therefore to determine the unknown temperature - dependent source term

(or flux-temperature function) f(u) from a knowledge of the initial temperature

distribution, and a measurement of the temperature u(x, t) at one boundary.

We shall first consider the case of recovering the pair (u, f) in (B). Why should one

be interested in recovering the boundary term f? In many materials, the actual

radiation mechanism is not known perfectly, and one must use an approximation.

Many such approximations are possible. Perfect black body radiation into space

(with zero ambient temperature) is governed by the law u/av = au 4 where a is

Boltzmann's constant, and Ou/Oz' denotes the derivative normal to the boundary.

In a linear model (Newton's law of cooling), one assumes that the heat leaves the

ends of the bar with the flux proportional to a temperature difference, 8u/uv =
k(u - u,). We propose a method for obtaining the exact form of the dependence

of the flux on temperature in the nonlinear case.

If the boundary satisfies a known radiation law Ou/Ov = h(u) but the incoming flux

Q is temperature dependent and unknown, we have Ou/Ov = h(u) + Q(u) E f(u).

This can be viewed as a problem in nonlinear control theory. The target set is
the desired temperature response {h(ti)} and the unknown function Q(.) is the

control. We will show that for any target set of monotone data, a piecewise linear

1... ...



function f exists with the property that the solution u(x, t, f) to (B) with f = f
satisfies u(0, ti, f) = h(t,).

At best we will only be able to recover the function f(u) for those values taken on
by u(0, t) for 0 < t < T. It is thus necessary that the range of values of the function
u(x, t) for x E [0, 1] be contained in the range of values of u(0, t) for 0 < t < T.
In addition, we require the overposed data to be monotone in t. This monotonicity
property is essential to recover the function f from a knowledge of f(h). We shall
make no attempt to completely characterize the class of allowable overposed data
h(t). Instead we shall assume that for some function f(u), the data u(0, t; f) is
given, and show that the unknown radiation function can be reconstructed from the
overposed data. We define the residual of the mapping from h '-4 f as u(0, t; f) -
h(t). Requiring this to vanish at a discrete set of points tj, generates a collocation
scheme.

In a recent paper [2], the authors proved the existence of a unique solution to
(B) with the overposed data u(0, t) = h(t). The solution of the inverse problem
was obtained by an iteration scheme using the boundary condition itself as the
update algorithm. This method can be summarized as follows. For a given func-
tion f, let U(x, t; f) denote the solution to (B) except that the overposed data
U(0, t) = h(t) is used in place of the condition u,(O, t) - f(u(O, t)). If in addi-
tion the function U also satisfies this condition, then we must have the identity
f(h(t)) = U.(O,t;f) M T[f]. Indeed, one can show that under suitable condi-
tions, there exists a unique fixed point of the mapping T, and that this solves
the inverse problem. A similar approach can be used for the problem (I). Eval-
uating the differential equation ut - u., = g + f on the line x = 0, we obtain
f(h(t)) = {h'(t) - -f(0, t)} - u.,(0, t; f) - T[f].

Since we have interchanged the primary and overposed data along one boundary,
this method for solving the boundary recovery problem (B) is limited to one spatial
dimension. The fixed point formulation of (I) can be carried out in higher dimen-
sions. Both methods involve numerical differentiation of data, and hence require
the boundary measurements to be fairly noise-free. Although the fixed point formu-
lations have limitations, they are constructive, and offer the possibility of proving
existence and uiqueness results for the inverse problem. In practice they converge
very rapidly (typically to within a few percent in less than 5 iterations),

How expensive are these methods? One normally expects an inverse problem to be
more expensive than the corresponding direct problem. There are several reasons
for this expectation. First, although the direct problem may be linear, the inverse
problem will often be nonlinear. Second, inverse problems tend to be ill-posed,

2



which contributes to their difficulty.

In the case of the fixed point methods, one can see that the update algorithm for
f,+1 in terms of f,, has minimal cost, provided one has obtained the solution of
the direct problem U(x, t, f,,). Thus, the cost of the fixed point algorithms is the
number of iterations required for acceptable convergence multiplied by the cost of
solving the direct problem. As mentioned above, the actual cost of the inverse
problem is on the order of a few times the cost of a single direct solve. While
this is certainly acceptable, could further improvements be made? The collocation
method outlined in this paper offers just such a possibility. Since the direct problem
is nonlinear, if iterative methods are required for accuracy (for example Crank-
Nicolson), then the cost of the inverse collocation method is comparable to the cost
of a single nonlinear direct solve. We have performed several numerical experiments
which indicate that the scheme is fairly robust under noisy data.

The Collocation Method.

We shall assume that the maximum values for u at any time occurs on the observed
boundary and that the boundary data is monotone. Without loss of generality, we
shall assume that it is increasing.

The collocation approach to the solution of problem (B) can be described as follows.
We consider a function f, piecewise linear on each of the intervals [tj, tj+I], with
the corresponding function u(x, t; f).

(a) Assume that f(v) is either known or has been approximated by a function f(v)
for v < h(tj). On the interval [h(tj), h(tj+)] extend f using the linearized
approximation 1(v) = Ai(v - h(tj)) + f(h(tj)) , for some constant Aj which
should be chosen in order to satisfy the collocation condition u(O, tj+1 ; f) =
h(tj+,). We use a secant method to calculate the slope Aj from the resulting
nonlinear equation

(b) Step (a) is continued for each interval [tj, tj+I].

(c) How does one obtain the starting value f(h(O)) ? If the initial data and bound-
ary data are compatible at t = 0 then we have f(h(O)) = u'(0) which deter-
mines f initially. This will be the case if the process has been evolving for
some positive time interval. If the data are incompatible, we then use colloca-
tion on [ho, h1] to determine a constant approximation to f on this interval.
This results in an error which is O(Ah).
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A typical graph of f.ct and f is pictured below.

fact

There are some remarks to be made on the above procedure.

(1) The number of iterations required to obtain the slope A on a given collocation
interval will obviously depend on the tolerance required, and to the deviation
of the function fact from linearity on this interval, For most of the step sizes
and values of an actual function f, fact we chose, about 3 iterations sufficed to
obtain A to within the same accuracy as the forwards solution u(x, t; f). The
cost of the method is therefore 2 or 3 times the cost of solving a linear direct
problem, since the approximation is by a linear function on each of the intervals
[t, tj+l].

(2) An alternative collocation method for this problem would be to let f depend on
N parameters {(Ci,... , CN)}, and impose N constraints to determine the ci's
by a least squares procedure. In our situation this is not necessary because for
a parabolic equation the values of u(xo, tj) do not affect the values of u(Xo, t2 )

if tl > t 2. Thus the value of cj does not depend on the value of c 1 . This

allows the coefficients to be solved sequentially.

Let us consider the particular example of problem (B), ut - u,, = 0 for 0 < x < 1,
0 < t < 1 with u,(0, t) = f(u(O, t)), -u,(1, t) = f(u(1, t)) and u(x, 0) = 10x'(1 -

X) 2 . We choose fo(u) = 3u 2 -2u 3 . The choice of initial data was simply to ensure
compatibility with the boundary data at x = 0 and x = 1.

The function u(x, t; fa) was calculated numerically and the values of h(t)
u(1,tj;foc,) at the points tj = j/N for j = 0, 1, ... , N, used as data for
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the collocation scheme. We used a step size of k = 0.005 in time and h = 0.04
in the spatial direction. The table below shows the difference of f and f in the
supremum and L2 norms for various values of N.

Convergence rate of 1 to .

N jIfact - Ill(, IIf.,c - fll L2

2 0.0889 0.0410
5 0.0389 0.0130
10 0.0173 0.0036
25 0.0080 0.0011
50 0.0051 0.0010

For the interior f(u) case, problem (I), let us consider the particular example ut -
= 1 + f(u) u(x,0) = 0, u (O,t) = t(t - 2) u,(1,t) = 0, with fact(u) = ue -U•

Again we assume x E [0, 1], t E [0, 1]. The maximum principle guarantees that the
maximum value of u(x, t) will, for each fixed t, occur at x = 0. If we apply the
collocation scheme outlined above to this problem then we might well obtain results
like those in the figure below.

/
/

/

/u

Clearly something has gone wrong. The above picture strongly suggests that the

inverse problem as defined is ill-posed and stability can only be recovered if we

can find the correct dependence of the overposed data on f. The fixed point for-

mulation, which requires one to evaluate the differential operator on the overposed

boundary indicates the correct space. In this case using equation (1.8) we see that -f
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and h' should have the same regularity as f if a fixed point is to be obtained. This
strongly suggests that we should expect that the mapping h '-. f is not bounded
but that h' 4 f might be. This can in fact be shown, [3]. Thus we should expect
to include information on the derivative of the overposed data in our collocation
scheme.

Instead of setting the value of u(0, tj; f) equal to h(tj) at each of the collocation
points we can find the linear function f that minimizes the value of Iu(0, ti; f) -
h(t,)l + alut(O, t,;f) - h'(tj)I. In practice we have found that the value of a has
little effect on the convergence of the scheme provided it is sufficiently large. Instead
of this minimization which is more expensive than the direct collocation we can take
the limiting of large a which is the same is collocation on jut - h'I.

We obtained the results in the table below with this procedure.

Convergence rate of f to fact.

N Ilaf, - III 0 1 lfact - fil L2

5 0.0531 0.0533
10 0.0253 0.0173
20 0.0145 0.0089
40 0.0116 0.0045
80 0.0065 0.0034

We have been able to prove the following result for the recovery of the boundary
unknown, and we are currently investigating analogous results for problem (I).

Theorem. (Convergence Theorem) Given monotonicity of u and sufficent regu-
larity of the data, there exists a piecewise linear function f such that the solu-
tion ii(x,t; f) to (B) satisfies the collocation condition u(O, t; fN) = h(ti) for
j = 0, 1, ... IN. Furthermore, lim NPII- fNI =0, for p < 1/2.' N-oo

Corollary. If the target set of boundary measurements, {h(tj)} is monotone, there
exists a piecewise linear boundary control, f, such that u(0, ti; f) = h(ti).

Besides the simplicity of this method, the collocation procedure offers advantages
over global recovery schemes. Given any situation where the overposed data depends
on the function f in a monotone manner, the collocation method can be carried
out in principle.
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